大数据概念:数据网格和DataOps

2024-01-01 02:12
文章标签 数据 概念 dataops 网格

本文主要是介绍大数据概念:数据网格和DataOps,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

数据网格(Data Mesh)

一种新型的数据架构模式,旨在解决传统数据架构中存在的一些问题,例如数据孤岛、数据冗余、数据安全等。数据网格将数据作为一种服务,通过在分布式环境中提供数据服务,实现数据的共享和利用。

以下是数据网格的详细介绍:

  1. 基本概念
    数据网格的基本构成单元是数据产品,数据产品是由数据仓库、数据集市、数据源等组成的。数据网格还包括数据消费者、数据生产者、数据管理员等角色,他们共同协作,实现数据的共享和利用。

  2. 架构设计

数据网格的架构设计包括数据生产者、数据仓库、数据集市、数据消费者等组件,其中数据生产者是数据源,负责提供数据;数据仓库是数据的存储中心,负责数据的存储、管理和计算;数据集市是数据的展示中心,负责数据的展示和分析;数据消费者是数据的使用者,负责使用数据,并进行数据的反馈和更新。

  1. 数据治理

数据网格强调数据治理的重要性,包括数据质量、数据安全、数据合规等方面。数据管理员负责数据的治理和管理,包括数据的清洗、整合、标准化等操作。

  1. 数据服务

数据网格的核心是数据服务,数据生产者提供数据接口,数据消费者使用数据接口,数据仓库和数据集市提供数据计算和分析服务。数据服务的目的是让数据变得可用,提高数据的价值。

  1. 优点

数据网格的优点包括提高数据的可用性、可靠性和安全性;提高数据的灵活性和可扩展性;提高数据的处理效率和质量;降低数据管理成本和风险。

  1. 应用场景

数据网格适用于大型企业和组织,可以应用于数据中台、大数据平台、数据仓库等场景,帮助企业实现数据的共享和利用,提高数据的价值和作用。数据网格是一种新型的数据架构模式,它将数据作为一种服务,通过在分布式环境中提供数据服务,实现数据的共享和利用,是数据管理和利用的重要趋势。

在这里插入图片描述

数据运维(Data Ops)

是一种基于运维理念的数据管理方法,它结合了 DevOps、数据仓库和数据科学等领域的思想和技术,旨在提高数据的质量、可靠性和可用性,从而支持企业的业务发展和创新。

数据运维的核心理念是将数据作为一种服务,通过持续集成、持续交付和持续运营的方式,实现数据的快速、可靠和安全的生产、传输和消费。数据运维的主要目标是提高数据的生产率、降低数据的成本、提高数据的质量和可靠性,以及实现数据的合规性和安全性。

目标
DataOps 的目标是提高数据处理的效率和质量,以更快地生成高质量的数据产品。它通过自动化数据处理流程、优化数据管道、提高数据质量和一致性来实现这一目标。

特点
DataOps 具有以下特点:

  • 自动化:DataOps 将自动化作为其核心原则之一。它使用自动化工具和流程来简化数据处理流程,从而提高效率和减少错误。
  • 可重复:DataOps 强调可重复性,以确保数据处理流程的一致性和准确性。这意味着每次数据处理都应该是可重复的,并且可以在任何时候进行验证。
  • 可扩展:DataOps 支持可扩展的数据处理流程,以满足不断变化的业务需求。这意味着数据处理流程可以轻松地扩展,以适应不同的数据规模和复杂性。
  • 协作:DataOps 强调团队协作,以确保数据处理流程的顺利进行。这意味着数据团队需要密切合作,以确保数据处理流程的高效性和准确性。

工具
DataOps 使用一系列工具来支持数据处理流程,包括:

数据仓库和平台:例如 Apache Hadoop、Apache Hive、Amazon S3 等。
数据集成工具:例如 Talend、Apache NiFi 等。
数据质量工具:例如 Trifacta、DataCleanBot 等。
持续集成/持续交付(CI/CD)工具:例如 Jenkins、GitLab 等。

数据运维的关键技术包括:

  1. 数据集成:数据集成是将多个数据源中的数据合并到一个统一的数据仓库或数据集中,以便进行数据分析和决策。数据集成的技术包括 ETL、ETL、数据虚拟化等。

  2. 数据仓库:数据仓库是一个结构化的数据存储系统,用于支持数据分析和决策。数据仓库的技术包括 SQL、NoSQL 数据库、分布式存储等。

  3. 数据治理:数据治理是对数据进行管理、监督和控制的过程,以确保数据的准确性、一致性和安全性。数据治理的技术包括数据质量管理、数据安全、数据隐私等。

  4. 数据分析:数据分析是使用统计学和数据科学技术对大量数据进行处理和分析,以提取有用的信息和洞察。数据分析的技术包括机器学习、深度学习、数据挖掘等。

  5. 数据可视化:数据可视化是将数据以图形或图像的形式呈现出来,以便更好地理解和分析数据。数据可视化的技术包括报表、仪表盘、数据可视化等。

应用
DataOps 可以应用于各种数据处理场景,包括:

数据科学:DataOps 可以用于数据科学家和数据工程师之间的协作,以快速生成高质量的数据产品。
商业智能:DataOps 可以用于快速生成报告和洞察,以帮助企业做出更好的业务决策。
机器学习:DataOps 可以用于快速迭代机器学习模型,以提高模型的准确性和效率。

总的来说,数据运维是一种基于运维理念的数据管理方法,它结合了 DevOps、数据仓库和数据科学等领域的思想和技术,旨在提高数据的质量、可靠性和可用性,从而支持企业的业务发展和创新。

这篇关于大数据概念:数据网格和DataOps的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557895

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者