图文证明 泰勒公式展开

2023-12-31 23:12

本文主要是介绍图文证明 泰勒公式展开,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泰勒公式

泰勒公式简单来说就是,可以用一个N次多项式来表示出一个连续可导的函数 f(x)
是一个用函数在某点的信息描述其附近取值的公式

第一步

思考
这是一个sin(x)的图像 用函数在原点的信息描述其附近取值
在这里插入图片描述
用一阶导数贴合:
直接用切线来贴合就好
画一个点(0,sin(0)除的切线 可以由直线的两点式得 :
y = f ( 0 ) + f ′ ( 0 ) ( x − 0 ) y = f(0) + f'(0)(x-0) y=f(0)+f(0)(x0)

在这里插入图片描述
根据图像我们发现在 0 附近这个函数和 s i n ( x ) 很贴合 , 越靠近 0 越贴合 根据图像我们发现在0附近这个函数和sin(x)很贴合,越靠近0越贴合 根据图像我们发现在0附近这个函数和sin(x)很贴合,越靠近0越贴合

找个三次函数来贴合:
在这里插入图片描述
找个五次函数贴合:
在这里插入图片描述

我们发现阶数越高越贴合 , 离 0 越近越贴合 我们发现阶数越高越贴合,离0越近越贴合 我们发现阶数越高越贴合,0越近越贴合

于是我们,大胆假定一个函数可以用N次多项式来进行代替

f ( x ) = C 0 + C 1 x + C 2 x 2 + … + C N − 1 x N − 1 + C N x N f(x) = C_0 + C_1 x + C_2 x^2 + \ldots + C_{N-1} x^{N-1} + C_N x^N f(x)=C0+C1x+C2x2++CN1xN1+CNxN

求系数

所以现在变为,我们怎么得到N次多项式的系数

因为我们是由一个点的信息来描述其附近取值,那么我们可以理解为这个点的附近区域的函数段是相同的,那么它们的各阶导数该点的值也是相同的.
举例子:
给定多项式:
f ( x ) = C 0 + C 1 x + C 2 x 2 + C 3 x 3 f(x) = C_0 + C_1 x + C_2 x^2 + C_3 x^3 f(x)=C0+C1x+C2x2+C3x3

第一步,令 ( x ) 为零,得到:
f ( 0 ) = C 0 f(0) = C_0 f(0)=C0

第二步,对 ( f(x) ) 求导,得到一阶导数:
f ′ ( x ) = C 1 + 2 C 2 x + 3 C 3 x 2 f'(x) = C_1 + 2C_2x + 3C_3x^2 f(x)=C1+2C2x+3C3x2
代入 ( x = 0 ),得到:
f ′ ( 0 ) = C 1 f'(0) = C_1 f(0)=C1

第三步,对 ( f(x) ) 进行二次求导,得到二阶导数:
f ′ ′ ( x ) = 2 C 2 + 6 C 3 x f''(x) = 2C_2 + 6C_3x f′′(x)=2C2+6C3x
代入 ( x = 0 ),得到:
f ′ ′ ( 0 ) = 2 C 2 f''(0) = 2C_2 f′′(0)=2C2
C 2 = f ′ ′ ( 0 ) 2 C_2 = \frac{f''(0)}{2} C2=2f′′(0)

第四步,对 ( f(x) ) 进行三次求导,得到三阶导数:
f ′ ′ ′ ( x ) = 6 C 3 f'''(x) = 6C_3 f′′′(x)=6C3
代入 ( x = 0 ),得到:
f ′ ′ ′ ( 0 ) = 6 C 3 f'''(0) = 6C_3 f′′′(0)=6C3
C 3 = f ′ ′ ′ ( 0 ) 6 C_3 = \frac{f'''(0)}{6} C3=6f′′′(0)

然后,你总结得到多项式的泰勒展开式为:
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 f(x)=f(0)+f(0)x+2!f′′(0)x2+3!f′′′(0)x3

这是一个泰勒展开,适用于充分光滑的函数,通过这个展开式,我们可以近似表示函数在 ( x = 0 ) 附近的行为。

我们通过运算发现
给定函数 f(x),在 x = a 处的 n 阶泰勒展开式为:

P n ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + … + f ( n ) ( a ) n ! ( x − a ) n P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n Pn(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2+3!f′′′(a)(xa)3++n!f(n)(a)(xa)n

其中, f ′ ( a ) 表示 f ( x ) 在 x = a 处的一阶导数, f ′ ′ ( a ) 表示二阶导数,以此类推, f ( n ) ( a ) 表示第 n 阶导数。 其中,f'(a) 表示 f(x) 在 x = a 处的一阶导数,f''(a) 表示二阶导数,以此类推,f^{(n)}(a) 表示第 n 阶导数。 其中,f(a)表示f(x)x=a处的一阶导数,f′′(a)表示二阶导数,以此类推,f(n)(a)表示第n阶导数。

通用形式为:

P n ( x ) = ∑ k = 0 n f ( k ) ( a ) k ! ( x − a ) k P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x - a)^k Pn(x)=k=0nk!f(k)(a)(xa)k

试试不在0展开

在点1处展开:
一次多项式 : 一次多项式: 一次多项式:
在这里插入图片描述
三次多项式 : 三次多项式: 三次多项式:
在这里插入图片描述
五次多项式 : 五次多项式: 五次多项式:
在这里插入图片描述

为什么可以表示

1阶导数是描述原函数的变化
2阶导数又是描述一阶导数的变化
所以多次在不断的导是要知道原函数在该点的变化,二阶导又看变化的变化怎么变化…
参考信息:
B站视频【泰勒公式】

这篇关于图文证明 泰勒公式展开的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557426

相关文章

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

CentOS 7 x64下安装MySql5.7图文详解

参考: https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/ http://www.jianshu.com/p/7cccdaa2d177 http://www.linuxidc.com/Linux/2016-09/135288.htm 最近搞了台阿里云服务器,搭载的是CentOS 7系统,这里记录下mysql5.7的安装流程 查

二维旋转公式

二维旋转公式 ros的tf工具包可以很方便的实现任意坐标系之间的坐标转换。但是,如果只是想简单的测试想法,而又不想编写过于庞杂的代码,考虑自己写二维旋转的函数。而与二维旋转问题对偶的另一个问题便是二维坐标系旋转变换。这两个问题的形式基本一样,只是旋转的角度相差一个负号。就是这个容易搞混,所以做个笔记,以备查用。 1. 二维旋转公式(算法) 而(此文只针对二维)旋转则是表示某一坐标点 ( x

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决 问题描述 最近在投一篇期刊论文,直接提交word文档,当时没有查看提交预览,一审审稿意见全是:公式乱码、公式乱码、乱码啊!!!是我大意了,第二次提交,我就决定将word文档转成PDF后再提交,避免再次出现公式乱码的问题。接着问题又来了,我利用‘文件/导出’或‘文件/另存为’的方式将word转成PDF后,发现公式

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备vue项目,服务器,linux,ubuntu,centos等都可以,服务器上已经

不同饭局,如何说开场白才能打开氛围?教你一个万能公式

在人情社会中,饭局不仅是吃饱饭的场合,更是人际交往、情感交流的重要平台。无论是家庭聚会、商务宴请、朋友相聚还是同事联谊,一个恰当的开场白都能迅速打破沉默,营造温馨和谐的氛围。 针对现实生活中最常见的四种饭局,酱酒亮哥教你一个万能开场白公式,这个公式分为四步,当然,不是一步不落的照搬,需要灵活应用,挑其中的两步、三步就行了,只要打开氛围,我们的目的也就达到了。接下来我们一起学习一下,希望你在不同的

【无线通信发展史⑧】测量地球质量?重力加速度g的测量?如何推导单摆周期公式?地球半径R是怎么测量出来的?

前言:用这几个问答形式来解读下我这个系列的来龙去脉。如果大家觉得本篇文章不水的话希望帮忙点赞收藏加关注,你们的鼓舞是我继续更新的动力。 我为什么会写这个系列呢? 首先肯定是因为我本身就是一名从业通信者,想着更加了解自己专业的知识,所以更想着从头开始了解通信的来源以及在每一个时代的发展进程。 为什么会从头开始写通信? 我最早是学习了中华上下五千年,应该说朝代史,这个算个人兴趣,从夏

UVA10071(重温高中物理公式)

Back to High School Physics Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu 题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18809 Description A parti