一个机器人位于一个 m x n 网格的左上角 。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。问总共有多少条不同的路径?【LeetCodeHot100】

本文主要是介绍一个机器人位于一个 m x n 网格的左上角 。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。问总共有多少条不同的路径?【LeetCodeHot100】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

力扣热题100之62: 

 先贴代码:

class Solution {public int uniquePaths(int m, int n) {// 创建棋盘int[][] board = new int[m][n];// 将第0列的格子路径设为1for (int i = 0; i < m; i++) {board[i][0] = 1;}// 将第0行的格子路径设为1for (int j = 0; j < n; j++) {board[0][j] = 1;}// 往后累加格子的路径数for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {board[i][j] = board[i-1][j] + board[i][j-1];}}return board[m-1][n-1];}
}

解题思路:

        题目中告诉我们,需要抵达棋盘的终点(右下角),并且机器人只能一次向右或者向下移动一步,那么当我们抵达一个格子时,只能是从它的左边或者上边过来,由此我们可以推断出:

抵达一个格子的路径数 = 抵达这个格子左边格子的路径数 + 抵达这个格子上边格子的路径数;


即表达式为:                f( i , j ) = f( i - 1 , j ) + f( i , j - 1 );

        我们先将第0行和第0列的格子全部设为1,表示从起始点走到这些格子有且只有一条路径可以走,我们拿一个 3 * 6 的棋盘举例:

 

        再来开始依次计算剩下空白的格子的路径数,因为由上可知表达式:

                                                f( i , j ) = f( i - 1 , j ) + f( i , j - 1 );

        所以在求一个格子的路径数时,只要把左边格子 + 上边格子 即可。求得剩下格子路径数为:

 

        由此就可以得出 到达终点的路径数为 15 + 6 = 21 ! 

这篇关于一个机器人位于一个 m x n 网格的左上角 。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。问总共有多少条不同的路径?【LeetCodeHot100】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557203

相关文章

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

python中的整除向下取整的操作方法

《python中的整除向下取整的操作方法》Python中的//是整数除法运算符,用于执行向下取整的除法,返回商的整数部分,不会四舍五入,它在分治法、索引计算和整数运算中非常有用,本文给大家介绍pyth... 目录1. // 的基本用法2. // vs /(普通除法)3. // 在 mid = len(lis

Qt把文件夹从A移动到B的实现示例

《Qt把文件夹从A移动到B的实现示例》本文主要介绍了Qt把文件夹从A移动到B的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录如何移动一个文件? 如何移动文件夹(包含里面的全部内容):如何删除文件夹:QT 文件复制,移动(

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在