Fine-Tuning Language Models from Human Preferences

2023-12-31 14:36

本文主要是介绍Fine-Tuning Language Models from Human Preferences,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Abstract

奖励学习(reward learning)可以将强化学习(RL)应用到由人类判断定义奖励的任务中,通过询问人类问题来构建奖励模型。奖励学习的大部分工作使用了模拟环境,但是关于价值的复杂信息经常是以自然语言的形式表达的。我们相信语言奖励学习是使强化学习在现实世界任务中实用且安全的关键。在本文中,我们基于语言模型生成式预训练方面的进展,将奖励学习应用于四种自然语言任务:

  • continuing text with positive sentiment or physically descriptive language
  • summarization tasks on the TL;DR and CNN/Daily Mail datasets.

对于风格延续(stylistic continuation)任务,我们仅使用人类评估的 5,000 个比较就取得了良好的结果。
对于 summarization 任务,只使用 60,000 个比较训练的模型可以从输入中复制整个句子但跳过不相关的序言。
根据人类标注者的评估,这带来了合理的 ROUGE 分数和非常好的性能,但可能是利用了标注者依赖简单启发法这一事实。

1. Introduction

我们希望将强化学习应用于仅由人类判断定义的复杂任务,在这些任务中我们只能通过询问人类来判断结果是好还是坏。为了实现这个目标,我们首先利用人类标注来训练一个 reward model, 然后优化该模型。通过与人类的交互来学习这种模型已有很长的历史,但最近才被用于现代深度学习,而且只被用于相对简单的模拟环境 (

这篇关于Fine-Tuning Language Models from Human Preferences的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/556322

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

MonoHuman: Animatable Human Neural Field from Monocular Video 翻译

MonoHuman:来自单目视频的可动画人类神经场 摘要。利用自由视图控制来动画化虚拟化身对于诸如虚拟现实和数字娱乐之类的各种应用来说是至关重要的。已有的研究试图利用神经辐射场(NeRF)的表征能力从单目视频中重建人体。最近的工作提出将变形网络移植到NeRF中,以进一步模拟人类神经场的动力学,从而动画化逼真的人类运动。然而,这种流水线要么依赖于姿态相关的表示,要么由于帧无关的优化而缺乏运动一致性

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

阅读笔记--Guiding Attention in End-to-End Driving Models

作者:Diego Porres1, Yi Xiao1, Gabriel Villalonga1, Alexandre Levy1, Antonio M. L ́ opez1,2 出版时间:arXiv:2405.00242v1 [cs.CV] 30 Apr 2024 这篇论文研究了如何引导基于视觉的端到端自动驾驶模型的注意力,以提高它们的驾驶质量和获得更直观的激活图。 摘 要   介绍

Google Research 推出高效的Prompt Tuning方法

人工智能咨询培训老师叶梓 转载标明出处 一般模型微调方法需要对预训练模型的所有参数进行调整,这在大规模模型中既耗时又耗资源。Google Research的研究团队提出了一种名为“Prompt Tuning”的方法,旨在通过学习“软提示”来调整冻结的语言模型,使其能够更好地完成特定的下游任务。这种方法不仅简单有效,而且在模型规模增大时,其性能逐渐接近全模型微调(Model Tuning)的效果。

The Llama 3 Herd of Models【论文原文下载】

关注B站可以观看更多实战教学视频:hallo128的个人空间 The Llama 3 Herd of Models【论文原文】 点击下载:原文下载链接 摘要 现代人工智能(AI)系统由基础模型驱动。本文介绍了一组新的基础模型,称为 Llama 3。它是一群原生支持多语言、编码、推理和工具使用的语言模型。我们最大的模型是一个密集型 Transformer,具有 405    B {40