本文主要是介绍CNN的平移不变性来源于数据学习or结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
转载:https://blog.csdn.net/ytusdc/article/details/107666902
重点参考:https://www.zhihu.com/question/301522740
什么是平移不变性
不变性
不变性意味着即使目标的外观发生了某种变化,但是你依然可以把它识别出来。这对图像分类来说是一种很好的特性,因为我们希望图像中目标无论是被平移,被旋转,还是被缩放,甚至是不同的光照条件、视角,都可以被成功地识别出来。
所以上面的描述就对应着各种不变性:
平移不变性:Translation Invariance
旋转/视角不变性:Ratation/Viewpoint Invariance
尺度不变性:Size Invariance
光照不变性:Illumination Invariance
平移不变性/平移同变性
在欧几里得几何中,平移是一种几何变换,表示把一幅图像或一个空间中的每一个点在相同方向移动相同距离。比如对图像分类任务来说,图像中的目标不管被移动到图片的哪个位置,得到的结果(标签)应该是相同的,这就是卷积神经网络中的平移不变性。
平移不变性意味着系统产生完全相同的响应(输出),不管它的输入是如何平移的 。平移同变性(translation equivariance)意味着系统在不同位置的工作原理相同,但它的响应随着目标位置的变化而变化 。比如,实例分割任务,就需要平移同变性,目标如果被平移了,那么输出的实例掩码也应该相应地变化。最近看的FCIS这篇文章中提到,一个像素在某一个实例中可能是前景,但是在相邻的一个实例中可能就是背景了,也就是说,同一个像素在不同的相对位置,具有不同的语义,对应着不同的响应,这说的也是平移同变性。
为什么卷积神经网络具有平移不变性
简单地说,卷积+最大池化约等于平移不变性。
卷积:简单地说,图像经过平移,相应的特征图上的表达也是平移的。下图只是一个为了说明这个问题的例子。输入图像的左下角有一个人脸,经过卷积,人脸的特征(眼睛,鼻子)也位于特征图的左下角。假如人脸特征在图像的左上角,那么卷积后对应的特征也在特征图的左上角。 (如下两幅图所示)
在神经网络中,卷积被定义为不同位置的特征检测器,也就意味着,无论目标出现在图像中的哪个位置,它都会检测到同样的这些特征,输出同样的响应。比如人脸被移动到了图像左下角,卷积核直到移动到左下角的位置才会检测到它的特征。
池化:比如最大池化,它返回感受野中的最大值,如果最大值被移动了,但是仍然在这个感受野中,那么池化层也仍然会输出相同的最大值。这就有点平移不变的意思了。
所以这两种操作共同提供了一些平移不变性,即使图像被平移,卷积保证仍然能检测到它的特征,池化则尽可能地保持一致的表达。
总结
卷积的平移不变性就是通过卷积+池化以后不管某一特征移动了位置,总可以检测出来输入到下一层中,又由于全连接是加权求和计算,被CNN激活的特征又可以传导到下一层中。
参考文章:https://zhangting2020.github.io/2018/05/30/Transform-Invariance/
证伪:CNN中的图片平移不变性
但是最新的研究分析平移不变性证伪
相关文章:
1、CNN为什么丢失了平移不变性?怎么保持? https://zhuanlan.zhihu.com/p/77543304
2、证伪:CNN中的图片平移不变性 :https://zhuanlan.zhihu.com/p/38024868
3、http://www.360doc.com/content/20/0401/21/32196507_903263339.shtml
这篇关于CNN的平移不变性来源于数据学习or结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!