论文阅读——Slide-Transformer(cvpr2023)

2023-12-30 23:44

本文主要是介绍论文阅读——Slide-Transformer(cvpr2023),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention

一、分析

1、改进transformer的几个思路:

(1)将全局感受野控制在较小区域,如:PVT,DAT,使用稀疏全局注意力来从特征图选择稀疏的键对值,并且在所有查询中共享它们。

(2)就是Swin Transformer这条窗口注意力范式,输入被分为特殊设计的窗口,特征在窗口中提取并融合。非常有效,但是有一些局限性,一方面,稀疏全局注意力在捕捉局部特征方面往往较差,并且容易受到关键和值位置的影响,在这些位置,其他区域中的信息特征可能会被丢弃。另一方面,窗口注意可能会阻碍跨窗口通信,这又引入了额外的设计,如窗口偏移,从而对模型结构设置限制。

一个自然有效的替代方案不是缩小全局感受野,而是通过将每个查询的感受野约束在其自己的相邻像素中来采用局部注意力。与前面提到的注意力模式相比,局部注意力具有与平移等变和局部归纳偏差卷积的优点,同时也享有自注意机制的灵活性和数据依赖性。许多工作已经研究了将局部注意力应用于现代卷积或Transformer模型。然而,他们要么使用低效的Im2Col函数,这会导致推理时间的大幅增加,要么依赖于精心编写的CUDA内核,这限制了在没有CUDA支持的设备上的适用性。因此,开发一个既高效又可推广的局部注意力模块仍然具有挑战性。

PVT将特征图中的稀疏位置采样视为键值对。DAT采取了进一步的步骤,并以数据相关的方式将固定位置向不同的方向移动。MViT在输入上使用池化函数,以获得键和值对,这可以被视为特征图的较低分辨率。Swin Transformer使用窗口+位移,CSwin Transformer在此基础上使用十字形窗口,进一步提高模型能力。local attention限制每个查询的感受野在周围的像素。

2、Attention Patterns(即总结一下)

(1) 稀疏全局注意力考虑选择一组稀疏的键值对,而不是密集的特征图。然而,这也限制了将特征提取到有限的输入子集中的潜力。此外,键和值对对于所有查询都是相同的。这种查询不可知的选择策略可能导致整个特征图中的特征同质化。

(2) 窗口注意力是另一种将输入小心地完全划分为特定窗口的选项,在特定窗口中提取特征。尽管部分解决了查询不可知的键值对的限制,但所设计的模式可能会导致不自然的情况,即不同窗口边缘的特征尽管在特征图中很近,但却被完全隔离。此外,窗口模式需要在连续的块之间转换,以促进跨窗口的连接,这涉及到模型结构中的额外设计。

(3) 局部注意力将每个查询的感受野约束在其自己的相邻像素中,与卷积共享相似的模式。与以前的模式相比,局部注意力同时具有卷积和自我注意力的优点:1)以查询为中心的注意力模式产生的局部归纳偏差;2) 像传统卷积一样的平移等方差,显示出对输入偏移方差的鲁棒性;3) 涉及很少的人工设计,对模型架构设计的限制最小。

3、 Local Attention Implementation

不同方法的效率:

二、方法

1. New Perspective on Im2Col

图(1)是原本的Im2Col的基于列的试图。图2是基于行的试图,是作者发现的。以k=3为例,如果我们首先将原始特征图向9个不同的方向移动(图3(2.b)),然后将这些特征展平成行,最后将它们连接成列(图3的2.c)),则所获得的键/值矩阵被证明等效于HW局部窗口,该窗口可以恢复与原始Im2Col函数完全相同的输出(图3中的1.c))。

2. Shift as Depthwise Convolution

采用一个精心设计卷积核的深度卷积来代替低效的特征偏移。如上图(3.(3))

3. Deformed Shifting Module

引入了一种并行卷积路径,其中核参数在训练过程中被随机初始化并可学习。与将特征向不同方向转移的固定内核相比,可学习内核可以被解释为所有局部特征的线性组合。

(1) 局部注意力中的关键和价值对由一个更灵活的模块来处理,该模块大大提高了模型容量,并可以捕捉各种特征。(2) 可学习卷积核与DCN中的可变形技术表现出相似性。类似于DCN中四个相邻像素的双线性插值,我们的变形移位模块可以被视为局部窗口内特征的线性组合。这最终有助于增强输入的空间采样位置和模型几何变换。(3) 我们使用重新参数化技术[8]将两条平行路径转换为单个卷积。这样,我们可以在保持推理效率的同时提高模型容量。

结果:

这篇关于论文阅读——Slide-Transformer(cvpr2023)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554356

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st