MindOpt 云上建模求解平台:多求解器协同优化

2023-12-30 04:04

本文主要是介绍MindOpt 云上建模求解平台:多求解器协同优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下,使我们的决策目标得到一个最大或者最小值的决策。
使用数学规划的方法我们需要确定问题的目标、约束、变量的取值范围,然后进行数学建模,将数学公式转化为代码进行求解,得到的结果就是我们的最优决策。而优化求解器可以帮助我们求解大规模数据的数学规划问题。

数学规划的类型

数学规划的种类繁多,常见的有线性规划、整数规划、非线性规划、动态规划等。不同类型的规划适用于不同的实际问题,选择合适的规划方法可以提高问题求解的效率和准确性。
MindOpt优化求解器是阿里巴巴达摩院决策智能实验室研发的一款国产求解器,目前求解线性规划的能力十分强大,混合整数线性规划在第五届电力调度AI大赛中斩获冠军,还支持非线性规划中的凸二次规划、半定规划。

实际生活中我们遇到的问题种类更加丰富,例如非线性规划、混合整数非线性规划、约束规划、二次规划等。这些问题MindOpt就无法求解了吗?让我们接着看下文

实际应用

MAPL建模语言调用其他求解器

虽然MindOpt优化求解器当前还不支持这些功能,但MindOpt Studio 云上建模求解平台上可以使用MindOpt APL建模语言一行代码调用其他求解器进行求解。
MAPL支持调用多种优化求解器,包含商用求解器和开源求解器。
建模后可一行代码就切换求解器,如下,求解器名称均采用小写字母:

option solver mindopt;     # (可选)指定求解用的求解器,默认是MindOpt
solve; 

支持的调用的求解器如下:

开源求解器描述适合问题
Ipopt来自COIN-OR, Eclipse Public License,可获取源码 https://github.com/coin-or/IpoptNonlinear optimization (NLP)
Cbc来自COIN-OR, Eclipse Public License,可获取源码 https://github.com/coin-or/CbcMixed integer linear programming(MILP)
Gecodehttps://www.gecode.org/,MIT license,可获取源码https://github.com/Gecode/gecodeConstraint solver (约束规划)
Bonmin来自COIN-OR, Eclipse Public License,可获取源码:https://github.com/coin-or/BonminMixed-Integer Nonlinear Programming(MINLP)
HiGHShttps://highs.dev,MIT license,可获取源码https://github.com/ERGO-Code/HiGHSlarge-scale sparse linear programming (LP), mixed-integer programming (MIP), and quadratic programming (QP)
Couennehttps://www.coin-or.org/Couenne/,来自COIN-OR, Eclipse Public License,可获取源码https://www.coin-or.org/download/source/Mixed-Integer Nonlinear Programming(MINLP)
JaCoPGNU Affero General Public License,可获取源码:https://github.com/radsz/jacopConstraint Programming(约束规划)

支持的其他求解器可以查看文档

命令行模式调用

建模语言,又是一个新的知识!无论是否简单,都需要进行学习,那么有什么好的方法,或者更大众方法解决呢?MindOpt Studio 云上建模求解平台还提供了命令行调用其他求解器的功能,只需要将nl文件或者mps文件上传至平台的Notebook,然后输入求解器的名字以及文件名即可求解非线性规划、混合整数非线性规划等问题。
image.png
此外,对于建模语言,平台提供了丰富的案例于用户参考学习,例如虚拟电厂智能调度、排产排程等
image.png

这篇关于MindOpt 云上建模求解平台:多求解器协同优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/551647

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6