OPENCV例子opencv-4.5.5\samples\gpu\generalized_hough.cpp的代码分析

2023-12-29 16:50

本文主要是介绍OPENCV例子opencv-4.5.5\samples\gpu\generalized_hough.cpp的代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该程序演示了使用广义霍夫变换进行任意对象查找,仅检测位置,无需平移和旋转。

相关类的继承关系如下图:

示例的调用关系如下图:

 

main的调用关系如下图:

 

main的流程图如下图:

 

main的UML逻辑图如下图:

 

示例源代码:

#include <vector>

#include <iostream>

#include <string>

#include "opencv2/core.hpp"

#include "opencv2/core/utility.hpp"

#include "opencv2/imgproc.hpp"

#include "opencv2/cudaimgproc.hpp"

#include "opencv2/highgui.hpp"

using namespace std;

using namespace cv;

static Mat loadImage(const string& name)

{

    Mat image = imread(name, IMREAD_GRAYSCALE);

    if (image.empty())

    {

        cerr << "Can't load image - " << name << endl;//无法载入图片

        exit(-1);

    }

    return image;

}

int main(int argc, const char* argv[])

{

    CommandLineParser cmd(argc, argv,

        "{ image i        | ../data/pic1.png  | input image }"           //图片i

        "{ template t     | templ.png | template image }"                //模板        

        "{ full           |           | estimate scale and rotation }"        //估计尺度和旋转        

        "{ gpu            |           | use gpu version }"        //使用GPU

        "{ minDist        | 100       | minimum distance between the centers of the detected objects }"//最小的距离(被检测物体的中心之间)

        "{ levels         | 360       | R-Table levels }"//RTable的层级

        "{ votesThreshold | 30        | the accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected }"//检测阶段模板中心的累加器阈值。它越小,可能检测到的错误位置越多

        "{ angleThresh    | 10000     | angle votes threshold }"//角度门槛

        "{ scaleThresh    | 1000      | scale votes threshold }"//尺度门槛

        "{ posThresh      | 100       | position votes threshold }"//位置门槛

        "{ dp             | 2         | inverse ratio of the accumulator resolution to the image resolution }"//累加器分辨率与图像分辨率的反比

        "{ minScale       | 0.5       | minimal scale to detect }"//检测的最小尺度

        "{ maxScale       | 2         | maximal scale to detect }"//检测的最大尺度

        "{ scaleStep      | 0.05      | scale step }"//尺度步长

        "{ minAngle       | 0         | minimal rotation angle to detect in degrees }"//以度为单位检测的最小旋转角度

        "{ maxAngle       | 360       | maximal rotation angle to detect in degrees }"//以度为单位检测的最大旋转角度

        "{ angleStep      | 1         | angle step in degrees }"//角度步长

        "{ maxBufSize     | 1000      | maximal size of inner buffers }"//内部缓冲区的最大大小

        "{ help h ?       |           | print help message }"//打印帮助信息

    );

    cmd.about("This program demonstrates arbitrary object finding with the Generalized Hough transform.");

    if (cmd.has("help"))

    {

        cmd.printMessage();

        return 0;

    }

    const string templName = cmd.get<string>("template");

    const string imageName = cmd.get<string>("image");

    const bool full = cmd.has("full");

    const bool useGpu = cmd.has("gpu");

    const double minDist = cmd.get<double>("minDist");

    const int levels = cmd.get<int>("levels");

    const int votesThreshold = cmd.get<int>("votesThreshold");

    const int angleThresh = cmd.get<int>("angleThresh");

    const int scaleThresh = cmd.get<int>("scaleThresh");

    const int posThresh = cmd.get<int>("posThresh");

    const double dp = cmd.get<double>("dp");

    const double minScale = cmd.get<double>("minScale");

    const double maxScale = cmd.get<double>("maxScale");

    const double scaleStep = cmd.get<double>("scaleStep");

    const double minAngle = cmd.get<double>("minAngle");

    const double maxAngle = cmd.get<double>("maxAngle");

    const double angleStep = cmd.get<double>("angleStep");

    const int maxBufSize = cmd.get<int>("maxBufSize");

    if (!cmd.check())

    {

        cmd.printErrors();

        return -1;

    }

    Mat templ = loadImage(templName);

    Mat image = loadImage(imageName);

    Ptr<GeneralizedHough> alg;

    if (!full)

    {

        Ptr<GeneralizedHoughBallard> ballard = useGpu ? cuda::createGeneralizedHoughBallard() : createGeneralizedHoughBallard();

        ballard->setMinDist(minDist);

        ballard->setLevels(levels);

        ballard->setDp(dp);

        ballard->setMaxBufferSize(maxBufSize);

        ballard->setVotesThreshold(votesThreshold);

        alg = ballard;

    }

    else

    {

        Ptr<GeneralizedHoughGuil> guil = useGpu ? cuda::createGeneralizedHoughGuil() : createGeneralizedHoughGuil();

        guil->setMinDist(minDist);

        guil->setLevels(levels);

        guil->setDp(dp);

        guil->setMaxBufferSize(maxBufSize);

        guil->setMinAngle(minAngle);

        guil->setMaxAngle(maxAngle);

        guil->setAngleStep(angleStep);

        guil->setAngleThresh(angleThresh);

        guil->setMinScale(minScale);

        guil->setMaxScale(maxScale);

        guil->setScaleStep(scaleStep);

        guil->setScaleThresh(scaleThresh);

        guil->setPosThresh(posThresh);

        alg = guil;

    }

    vector<Vec4f> position;

    TickMeter tm;

    if (useGpu)

    {

        cuda::GpuMat d_templ(templ);

        cuda::GpuMat d_image(image);

        cuda::GpuMat d_position;

        alg->setTemplate(d_templ);

        tm.start();

        alg->detect(d_image, d_position);

        d_position.download(position);

        tm.stop();

    }

    else

    {

        alg->setTemplate(templ);

        tm.start();

        alg->detect(image, position);

        tm.stop();

    }

    cout << "Found : " << position.size() << " objects" << endl;

    cout << "Detection time : " << tm.getTimeMilli() << " ms" << endl;

    Mat out;

    cv::cvtColor(image, out, COLOR_GRAY2BGR);

    for (size_t i = 0; i < position.size(); ++i)

    {

        Point2f pos(position[i][0], position[i][1]);

        float scale = position[i][2];

        float angle = position[i][3];

        RotatedRect rect;

        rect.center = pos;

        rect.size = Size2f(templ.cols * scale, templ.rows * scale);

        rect.angle = angle;

        Point2f pts[4];

        rect.points(pts);

        line(out, pts[0], pts[1], Scalar(0, 0, 255), 3);

        line(out, pts[1], pts[2], Scalar(0, 0, 255), 3);

        line(out, pts[2], pts[3], Scalar(0, 0, 255), 3);

        line(out, pts[3], pts[0], Scalar(0, 0, 255), 3);

    }

    imshow("out", out);

    waitKey();

    return 0;

}

这篇关于OPENCV例子opencv-4.5.5\samples\gpu\generalized_hough.cpp的代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550065

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,