本文主要是介绍数据结构探险(四)—— 树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
- 树是节点的有限集合
- 树的用途:压缩软件 哈夫曼树;人机对战(不断做树得搜索);
二叉树数组
c语言表示:
Tree.h
#ifndef TREE_H_INCLUDED
#define TREE_H_INCLUDEDclass Tree
{
public:Tree(int size,int *pRoot); //创建树~Tree(); //销毁树int *SearchNode(int nodeIndex); //根据索引寻找结点bool AddNode(int nodeIndex,int direction,int *pNode); //添加结点bool DeleteNode(int nodeIndex,int *pNode); //删除结点void TreeTraverse(); //遍历结点private:int *m_pTree;int m_iSize;
};
#endif // TREE_H_INCLUDED
Tree.cpp
#include<iostream>
#include"Tree.h"
using namespace std;Tree::Tree(int size,int *pRoot)
{m_iSize=size;m_pTree= new int[size];//从堆中分配了size个int大小的内存,并且pTree指向他for(int i=0;i<size;i++){m_pTree[i]=0;}m_pTree[0]=*pRoot;
}Tree::~Tree()
{delete []m_pTree;m_pTree=NULL;
}int* Tree::SearchNode(int nodeIndex)
{if(nodeIndex<0||nodeIndex>=m_iSize){return NULL;}if(m_pTree[nodeIndex]==0){return NULL;}return &m_pTree[nodeIndex];
}bool Tree::AddNode(int nodeIndex,int direction,int *pNode)
{//先找到结点//nodeindex本身不合法if(nodeIndex<0||nodeIndex>=m_iSize){return false;}if(m_pTree[nodeIndex]==0){return false;}if(direction==0){if(nodeIndex*2+1>=m_iSize) //结点范围不合法{return false;}if(m_pTree[nodeIndex*2+1]!=0)//该节点已有值{return false;}m_pTree[nodeIndex*2+1]=*pNode;//pNode是指针 *pNode是其内容}if(direction==1)//右结点{if(nodeIndex*2+2>=m_iSize) //结点范围不合法{return false;}if(m_pTree[nodeIndex*2+2]!=0)//该节点已有值{return false;}m_pTree[nodeIndex*2+2]=*pNode;//pNode是指针 *pNode是其内容}return true;
}bool Tree::DeleteNode(int nodeIndex,int *pNode)
{if(nodeIndex<0||nodeIndex>=m_iSize){return false;}if(m_pTree[nodeIndex]==0)// 要删除的地方本身就没有结点{return false;}*pNode=m_pTree[nodeIndex];m_pTree[nodeIndex]=0;return true;
}void Tree::TreeTraverse() //用数组表示的树,直接循环输出即可
{for(int i=0;i<m_iSize;i++){cout<<m_pTree[i]<<" ";}
}
测试
#include<stdlib.h>
#include<iostream>
#include"Tree.h"using namespace std;int main()
{int root=3;Tree *pTree = new Tree(10,&root);int node1=5;int node2=8;pTree->AddNode(0,0,&node1);pTree->AddNode(0,1,&node2);int node3=2;int node4=6;pTree->AddNode(1,0,&node3);pTree->AddNode(1,1,&node4);int node5=9;int node6=7;pTree->AddNode(2,0,&node5);pTree->AddNode(2,1,&node6);int node=0;pTree->DeleteNode(6,&node);cout<<"node = "<<node<<endl;pTree->TreeTraverse();int *p=pTree->SearchNode(2);cout<<endl<<"node = "<<*p<<endl;delete pTree;system("pause");return 0;
}
二叉树链表
Tree.h
#include"Node.h"
#include<stdio.h>class Tree
{
public:Tree(); //创建树~Tree(); //销毁树Node *SearchNode(int nodeIndex); //搜索结点bool AddNode(int nodeIndex,int direction,Node *pNode); //添加结点bool DeleteNode(int nodeIndex,Node *pNode);//删除结点void PreorderTraversal();void InorderTraversal();void PostorderTraversal();
private:Node *m_pRoot;
};
Tree.cpp
#include"Tree.h"Tree::Tree()
{m_pRoot= new Node();
}
Tree::~Tree()
{DeleteNode(0,NULL);//m_pRoot->DeleteNode();//也可以
}Node *Tree::SearchNode(int nodeIndex)
{return m_pRoot->SearchNode(nodeIndex);
}bool Tree::AddNode(int nodeIndex,int direction,Node *pNode)
{Node *temp=SearchNode(nodeIndex);if(temp==NULL){return false;}Node *node= new Node();if(node==NULL){return false;}node->index =pNode->index;node->data= pNode->data;node->pParent=temp;// 注意注意::注意在添加时要把父节点也记着if(direction==0){temp->pLChild=node;}if(direction==1){temp->pRChild=node;}return true;
}bool Tree::DeleteNode(int nodeIndex,Node *pNode)
{Node *temp=SearchNode(nodeIndex);if(temp==NULL){return false;}if(pNode!=NULL){pNode->data=temp->data;}temp->DeleteNode();//temp以及以下的子节点都删除return true;
}void Tree::PreorderTraversal()
{m_pRoot->PreorderTraversal();//从根开始遍历
}void Tree::InorderTraversal()
{m_pRoot->InorderTraversal();
}void Tree::PostorderTraversal()
{m_pRoot->PostorderTraversal();}
Node.h
#ifndef NODE_H_INCLUDED
#define NODE_H_INCLUDEDclass Node
{
public :Node();Node *SearchNode(int nodeIndex);void DeleteNode();void PreorderTraversal();void InorderTraversal();void PostorderTraversal();int index;int data;Node *pLChild;Node *pRChild;Node *pParent;
};#endif // NODE_H_INCLUDED
Node.cpp
#include<stdlib.h>
#include<stdio.h>
#include"Node.h"
#include<iostream>using namespace std;Node::Node()
{index = 0;data=0;pLChild=NULL;pRChild=NULL;pParent=NULL;
}Node *Node::SearchNode(int nodeIndex)
{if (this->index == nodeIndex){return this;}Node *temp = NULL;if (this->pLChild != NULL){if (this->pLChild->index == nodeIndex){return this->pLChild;}//注意:没找到的情况继续往下找else{temp = this->pLChild->SearchNode(nodeIndex);if (temp != NULL){return temp;}}}if (this->pRChild != NULL){if (this->pRChild->index == nodeIndex){return this->pRChild;}//注意没找到的情况继续往下找else{temp = this->pRChild->SearchNode(nodeIndex);if (temp != NULL){return temp;}}}return NULL;
}void Node::DeleteNode() //递归的删除结点
{if(this->pLChild!=NULL) //删除左结点{this->pLChild->DeleteNode();}if(this->pRChild!=NULL) //删除右结点{this->pRChild->DeleteNode();}if(this->pParent!=NULL) //找到其父节点{if(this->pParent->pLChild==this)//如果该节点是父节点的左结点{this->pParent->pLChild=NULL;}if(this->pParent->pRChild==this)//如果该节点是父节点的有节点{this->pParent->pRChild=NULL;}}delete this;
}void Node::PreorderTraversal(){cout<<this->index<<"---"<<this->data<<endl;if(this->pLChild!=NULL){this->pLChild->PreorderTraversal();}if(this->pRChild!=NULL){this->pRChild->PreorderTraversal();}}void Node::InorderTraversal(){if(this->pLChild!=NULL){this->pLChild->InorderTraversal();}cout<<this->index<<"---"<<this->data<<endl;if(this->pRChild!=NULL){this->pRChild->InorderTraversal();}}void Node::PostorderTraversal(){if(this->pLChild!=NULL){this->pLChild->PostorderTraversal();}if(this->pRChild!=NULL){this->pRChild->PostorderTraversal();}cout<<this->index<<"---"<<this->data<<endl;}
测试:
demo.cpp
#include<stdlib.h>
#include"Tree.h"
#include"Node.h"
#include<iostream>
using namespace std;/*(0)5(1) 8(2)
2(3) 6(4) 9(5) 7(6)
*/
using namespace std;int main(){Node *node1 = new Node();node1->index=1;node1->data=5;Node *node2= new Node();node2->index=2;node2->data=8;Node *node3 = new Node();node3->index=3;node3->data=2;Node *node4= new Node();node4->index=4;node4->data=6;Node *node5 = new Node();node5->index=5;node5->data=9;Node *node6= new Node();node6->index=6;node6->data=7;Tree *tree =new Tree();tree->AddNode(0,0,node1);tree->AddNode(0,1,node2);tree->AddNode(1,0,node3);tree->AddNode(1,1,node4);tree->AddNode(2,0,node5);tree->AddNode(2,1,node6);// tree->DeleteNode(6,NULL);
// tree->DeleteNode(5,NULL);tree->DeleteNode(2,NULL);// cout<<"--------------pre----------------"<<endl;
// tree->PreorderTraversal();
// cout<<"--------------in----------------"<<endl;
// tree->InorderTraversal();cout<<"--------------poster----------------"<<endl;tree->PostorderTraversal();delete tree;system("pause");return 0;}
这篇关于数据结构探险(四)—— 树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!