【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子APM32E103最小系统板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban

第十八章 通用定时器PWM输出实验

本章将介绍使用APM32E103的通用定时器输出PWM,通过本章的学习,读者将学习到通用定时器输出比较的使用。
本章分为如下几个小节:
18.1 硬件设计
18.2 程序设计
18.3 下载验证

18.1 硬件设计
18.1.1 例程功能

  1. LED0由暗变亮,再从亮变暗,以此循环
    18.1.2 硬件资源
  2. LED
    LED0 - PB5
  3. 定时器3
    通道2
    18.1.3 原理图
    本章实验使用的定时器3为APM32E103的片上资源,因此没有对应的连接原理图。
    18.2 程序设计
    18.2.1 Geehy标准库的TMR驱动
    本章实验将使用TMR3从通道2(PE5引脚)输出PWM,因此除了像上章实验配置定时器的基本参数外,还需要配置通用定时器的输出比较通道,具体的步骤如下:
    ①:配置TMR3的自动重装载值和预分频器数值等参数
    ②:配置输出比较通道1
    ③:使能TMR3
    ④:使能输出比较通道1输出
    ⑤:修改比较值以修改PWM输出的占空比
    在Geehy标准库中对应的驱动函数如下:
    ①:配置TMR
    请见第16.2.1小节中配置TMR的相关内容。
    ②:配置输出比较通道
    该函数用于配置TMR的任意输出比较通道,其函数原型如下所示:
void TMR_ConfigOC1(TMR_T* tmr, TMR_OCConfig_T* OC1Config)
void TMR_ConfigOC2(TMR_T* tmr, TMR_OCConfig_T* OC2Config)
void TMR_ConfigOC3(TMR_T* tmr, TMR_OCConfig_T* OC3Config)
void TMR_ConfigOC4(TMR_T* tmr, TMR_OCConfig_T* OC4Config)

该函数的形参描述,如下表所示:
在这里插入图片描述

表18.2.1.1 函数TMR_ConfigOCn()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.2 函数TMR_ConfigOCn()返回值描述
该函数使用TMR_OCConfig_T类型的结构体变量传入TMR输出比较通道的配置参数,该结构体的定义如下所示:

typedef enum
{TMR_OC_MODE_TMRING		= 0x00,	/* 冻结 */TMR_OC_MODE_ACTIVE		= 0x01,	/* 匹配时输出置为高 */TMR_OC_MODE_INACTIVE	= 0x02,	/* 匹配时输出置为低 */TMR_OC_MODE_TOGGLE		= 0x03,	/* 匹配时输出翻转 */TMR_OC_MODE_LOWLEVEL	= 0x04,	/* 强制输出为低 */TMR_OC_MODE_HIGHLEVEL	= 0x05,	/* 强制输出为高 */TMR_OC_MODE_PWM1		= 0x06,	/* PWM模式1 */TMR_OC_MODE_PWM2		= 0x07	/* PWM模式2 */
} TMR_OC_MODE_T;typedef enum
{TMR_OC_STATE_DISABLE,			/* 禁止输出 */TMR_OC_STATE_ENABLE				/* 开启输出 */
} TMR_OC_STATE_T;typedef enum
{TMR_OC_NSTATE_DISABLE,			/* 禁止互补输出 */TMR_OC_NSTATE_ENABLE			/* 开启互补输出 */
} TMR_OC_NSTATE_T;typedef enum
{TMR_OC_POLARITY_HIGH,			/* 高电平有效 */TMR_OC_POLARITY_LOW				/* 低电平有效 */
} TMR_OC_POLARITY_T;typedef enum
{TMR_OC_NPOLARITY_HIGH,			/* 互补高电平有效 */TMR_OC_NPOLARITY_LOW			/* 互补低电平有效 */
} TMR_OC_NPOLARITY_T;typedef enum
{TMR_OC_IDLE_STATE_RESET,		/* 空闲时为低电平 */TMR_OC_IDLE_STATE_SET			/* 空闲时为高电平 */
} TMR_OC_IDLE_STATE_T;typedef enum
{TMR_OC_NIDLE_STATE_RESET,		/* 互补空闲时为低电平 */TMR_OC_NIDLE_STATE_SET			/* 互补空闲时为高电平 */
} TMR_OC_NIDLE_STATE_T;typedef struct
{TMR_OC_MODE_T			mode;			/* 模式 */TMR_OC_STATE_T			outputState;	/* 输出状态 */TMR_OC_NSTATE_T			outputNState;	/* 互补通道输出状态 */TMR_OC_POLARITY_T		polarity;		/* 极性 */TMR_OC_NPOLARITY_T		nPolarity;		/* 互补通道极性 */TMR_OC_IDLE_STATE_T		idleState;		/* 空闲状态 */TMR_OC_NIDLE_STATE_T	nIdleState;		/* 互补通道空闲状态 */uint16_t					pulse;		/* 比较值 */
} TMR_OCConfig_T;该函数的使用实例,如下所示:
#include "apm32e10x.h"
#include "apm32e10x_tmr.h"	void example_fun(void)
{TMR_OCConfig_T tmr_oc_init_struct;/* 配置TMR1输出比较通道1 */tmr_oc_init_struct.mode			 = TMR_OC_MODE_PWM1;tmr_oc_init_struct.outputState	 = TMR_OC_STATE_ENABLE;tmr_oc_init_struct.outputNState = TMR_OC_NSTATE_ENABLE;tmr_oc_init_struct.polarity		 = TMR_OC_POLARITY_LOW;tmr_oc_init_struct.nPolarity	 = TMR_OC_NPOLARITY_HIGH;tmr_oc_init_struct.idleState	 = TMR_OC_IDLE_STATE_RESET;tmr_oc_init_struct.nIdleState	 = TMR_OC_NIDLE_STATE_RESET;tmr_oc_init_struct.pulse		 = 255;TMR_ConfigOC1(TMR1, &tmr_oc_init_struct);
}

③:使能TMR
请见第16.2.1小节中使能TMR的相关内容。
④:使能捕获比较通道
该函数用于使能捕获比较通道,其函数原型如下所示:
void TMR_EnableCCxChannel(TMR_T* tmr, TMR_CHANNEL_T channel);
该函数的形参描述,如下表所示:
在这里插入图片描述

表18.2.1.3 函数TMR_EnableCCxChannel()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.4 函数TMR_EnableCCxChannel()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{/* 使能TMR1捕获比较通道1 */TMR_EnableCCxChannel(TMR1, TMR_CHANNEL_1);
}
⑤:配置捕获比较值
该函数用于配置TMR指定通道的捕获比较值,其函数原型如下所示:
void TMR_ConfigCompare1(TMR_T* tmr, uint16_t compare1)
void TMR_ConfigCompare2(TMR_T* tmr, uint16_t compare2)
void TMR_ConfigCompare3(TMR_T* tmr, uint16_t compare3)
void TMR_ConfigCompare4(TMR_T* tmr, uint16_t compare4)

该函数的形参描述,如下表所示:
形参 描述
tmr 指向TMR外设结构体的指针
例如:TMR1、TMR2等(在apm32e10x.h文件中有定义)
compare x 捕获比较值
表18.2.1.5 函数TMR_ConfigComparen()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.6 函数TMR_ConfigComparen()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{/* 配置TMR1捕获比较寄存器1的值 */TMR_ConfigCompare1(TMR1, 200);
}

18.2.2 通用定时器驱动
本章实验的通用定时器驱动主要负责向应用层提供通用定时器的初始化函数。本章实验中,通用定时器驱动的驱动代码包括gtmr.c和gtmr.h两个文件。
通用定时器驱动中,对GPIO、TMR的相关宏定义,如下所示:
/* 通用定时器PWM输出引脚定义 */

#define GTMR_TMRX_PWM_CHY_GPIO_PORT         GPIOB
#define GTMR_TMRX_PWM_CHY_GPIO_PIN          GPIO_PIN_5
#define GTMR_TMRX_PWM_CHY_GPIO_REMAP()      do{ GPIO_ConfigPinRemap(GPIO_PARTIAL_REMAP_TMR3); }while(0)
#define GTMR_TMRX_PWM_CHY_GPIO_CLK_ENABLE() do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOB); }while(0)/* 通用定时器定义 */ 
#define GTMR_TMRX_PWM                       TMR3
#define GTMR_TMRX_PWM_CHY                   TMR_CHANNEL_2
#define GTMR_TMRX_INT_CLK_ENABLE()          do{ RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR3); }while(0)
通用定时器驱动中TMR3的初始化函数,如下所示:
/*** @brief       初始化通用定时器通道与PWM* @note*              通用定时器的时钟来自APB1,当PPRE1 ≥ 2分频的时候*              通用定时器的时钟为APB1时钟的2倍, 而APB1为60M,所以定时器时钟 = 120Mhz*              定时器溢出时间计算方法: Tout = ((arr + 1) * (psc + 1)) / Ft us.*              Ft=定时器工作频率,单位:Mhz** @param       arr: 自动重装值。* @param       psc: 时钟预分频数。* @retval      无*/
void gtmr_tmrx_pwm_chy_init(uint16_t arr, uint16_t psc)
{GPIO_Config_T gpio_init_struct;TMR_BaseConfig_T tmr_init_struct;TMR_OCConfig_T tmr_oc_init_struct;/* 使能时钟 */GTMR_TMRX_PWM_CHY_GPIO_CLK_ENABLE();                    /* 使能GPIOB时钟 */GTMR_TMRX_INT_CLK_ENABLE();                             /* 使能TIM时钟 */RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_AFIO);        /* 使能复用时钟 *//* 配置PWM输出引脚 */
/* 初始化IO口为复用功能 */gpio_init_struct.pin = GTMR_TMRX_PWM_CHY_GPIO_PIN;gpio_init_struct.mode = GPIO_MODE_AF_PP;                /* 复用推挽 */
gpio_init_struct.speed = GPIO_SPEED_50MHz;              /* 高速 */
/* 初始化LED引脚 */GPIO_Config(GTMR_TMRX_PWM_CHY_GPIO_PORT, &gpio_init_struct);/* 配置引脚复用功能 */
/* IO口REMAP设置, 是否必要查看头文件配置的说明 */GTMR_TMRX_PWM_CHY_GPIO_REMAP();/* 配置通用定时器 */tmr_init_struct.countMode = TMR_COUNTER_MODE_UP;        /* 递增计数模式 */tmr_init_struct.clockDivision = TMR_CLOCK_DIV_1;        /* 时钟分频系数 */tmr_init_struct.period = arr;                           /* 自动装载值 */tmr_init_struct.division = psc;                         /* 设置预分频器 */TMR_ConfigTimeBase(GTMR_TMRX_PWM, &tmr_init_struct);    /* 初始化通用定时器 *//* 配置通用定时器PWM输出 */tmr_oc_init_struct.mode = TMR_OC_MODE_PWM1;             /* 模式选择PWM1 */tmr_oc_init_struct.outputState = TMR_OC_STATE_ENABLE;   /* 使能输出 */tmr_oc_init_struct.outputNState = TMR_OC_NSTATE_DISABLE;/* 失能互补输出 */tmr_oc_init_struct.polarity = TMR_OC_POLARITY_LOW;      /* 输出极性 */tmr_oc_init_struct.nPolarity = TMR_OC_NPOLARITY_LOW;    /* 互补输出极性 */
tmr_oc_init_struct.idleState = TMR_OC_IDLE_STATE_RESET; /* 输出比较空闲状态 */
/* 互补输出比较空闲状态 */
tmr_oc_init_struct.nIdleState = TMR_OC_NIDLE_STATE_RESET;
/* 设置比较值,此值用来确定占空比,默认比较值为自动重装载值的一半,即占空比为50% */
tmr_oc_init_struct.pulse = arr / 2;                              TMR_ConfigOC2(GTMR_TMRX_PWM, &tmr_oc_init_struct);     /* 配置通用定时器通道 *//* 使能通用定时器及其自动重装载 */TMR_EnableAUTOReload(GTMR_TMRX_PWM);                   /* 使能自动重装载 */TMR_Enable(GTMR_TMRX_PWM);                             /* 使能通用定时器 */
}

从TMR3的初始化代码中可以看到,我们不仅配置了TMR3的自动重装载值和预分频器数值等基本参数,还配置了TMR3的输出比较通道2。因为需要使用GPIO引脚输出PWM,所以对应的GPIO引脚同样配置了复用功能。
18.2.3 实验应用代码
本实验的应用代码,如下所示:

int main(void)
{uint8_t dir = 1;uint16_t ledrpwmval = 0;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);  /* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);                         /* 配置系统时钟 */delay_init(120);                                  /* 初始化延时功能 */
usart_init(115200);                               /* 初始化串口 */
/* 初始化通用定时器通道与PWM */gtmr_tmrx_pwm_chy_init(500 - 1, 60 - 1);while (1){delay_ms(10);if (dir){
/* dir==1,ledrpwmval递增 */ledrpwmval ++;}else{
/* dir==0,ledrpwmval递减 */ledrpwmval --;}if (ledrpwmval > 300){/* ledrpwmval到达300后,方向改为递减 */dir = 0;}if (ledrpwmval == 0){/* ledrpwmval递减到0后,方向改为递增 */dir = 1;}/* 修改比较值控制占空比 */TMR_ConfigCompare2(GTMR_TMRX_PWM, ledrpwmval);}
}

从上面的代码中可以看到,在初始化完TMR3输出PWM后,就不断地改变TMR3通道2的比较值,以达到改变PWM占功比的目的。又因为PWM由PB5引脚输出,PB5引脚连接至LED0,所以LED0的亮度也会随之发生变化,从而实现呼吸灯的效果。
18.3 下载验证
在完成编译和烧录后,可以看到板子上的LED0先由暗再逐渐变亮,以此循环,实现了呼吸灯的效果。

这篇关于【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546573

相关文章

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

2025最新版Python3.13.1安装使用指南(超详细)

《2025最新版Python3.13.1安装使用指南(超详细)》Python编程语言自诞生以来,已经成为全球最受欢迎的编程语言之一,它简单易学易用,以标准库和功能强大且广泛外挂的扩展库,为用户提供包罗... 目录2025最新版python 3.13.1安装使用指南1. 2025年Python语言最新排名2.

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API