【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子APM32E103最小系统板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban

第十八章 通用定时器PWM输出实验

本章将介绍使用APM32E103的通用定时器输出PWM,通过本章的学习,读者将学习到通用定时器输出比较的使用。
本章分为如下几个小节:
18.1 硬件设计
18.2 程序设计
18.3 下载验证

18.1 硬件设计
18.1.1 例程功能

  1. LED0由暗变亮,再从亮变暗,以此循环
    18.1.2 硬件资源
  2. LED
    LED0 - PB5
  3. 定时器3
    通道2
    18.1.3 原理图
    本章实验使用的定时器3为APM32E103的片上资源,因此没有对应的连接原理图。
    18.2 程序设计
    18.2.1 Geehy标准库的TMR驱动
    本章实验将使用TMR3从通道2(PE5引脚)输出PWM,因此除了像上章实验配置定时器的基本参数外,还需要配置通用定时器的输出比较通道,具体的步骤如下:
    ①:配置TMR3的自动重装载值和预分频器数值等参数
    ②:配置输出比较通道1
    ③:使能TMR3
    ④:使能输出比较通道1输出
    ⑤:修改比较值以修改PWM输出的占空比
    在Geehy标准库中对应的驱动函数如下:
    ①:配置TMR
    请见第16.2.1小节中配置TMR的相关内容。
    ②:配置输出比较通道
    该函数用于配置TMR的任意输出比较通道,其函数原型如下所示:
void TMR_ConfigOC1(TMR_T* tmr, TMR_OCConfig_T* OC1Config)
void TMR_ConfigOC2(TMR_T* tmr, TMR_OCConfig_T* OC2Config)
void TMR_ConfigOC3(TMR_T* tmr, TMR_OCConfig_T* OC3Config)
void TMR_ConfigOC4(TMR_T* tmr, TMR_OCConfig_T* OC4Config)

该函数的形参描述,如下表所示:
在这里插入图片描述

表18.2.1.1 函数TMR_ConfigOCn()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.2 函数TMR_ConfigOCn()返回值描述
该函数使用TMR_OCConfig_T类型的结构体变量传入TMR输出比较通道的配置参数,该结构体的定义如下所示:

typedef enum
{TMR_OC_MODE_TMRING		= 0x00,	/* 冻结 */TMR_OC_MODE_ACTIVE		= 0x01,	/* 匹配时输出置为高 */TMR_OC_MODE_INACTIVE	= 0x02,	/* 匹配时输出置为低 */TMR_OC_MODE_TOGGLE		= 0x03,	/* 匹配时输出翻转 */TMR_OC_MODE_LOWLEVEL	= 0x04,	/* 强制输出为低 */TMR_OC_MODE_HIGHLEVEL	= 0x05,	/* 强制输出为高 */TMR_OC_MODE_PWM1		= 0x06,	/* PWM模式1 */TMR_OC_MODE_PWM2		= 0x07	/* PWM模式2 */
} TMR_OC_MODE_T;typedef enum
{TMR_OC_STATE_DISABLE,			/* 禁止输出 */TMR_OC_STATE_ENABLE				/* 开启输出 */
} TMR_OC_STATE_T;typedef enum
{TMR_OC_NSTATE_DISABLE,			/* 禁止互补输出 */TMR_OC_NSTATE_ENABLE			/* 开启互补输出 */
} TMR_OC_NSTATE_T;typedef enum
{TMR_OC_POLARITY_HIGH,			/* 高电平有效 */TMR_OC_POLARITY_LOW				/* 低电平有效 */
} TMR_OC_POLARITY_T;typedef enum
{TMR_OC_NPOLARITY_HIGH,			/* 互补高电平有效 */TMR_OC_NPOLARITY_LOW			/* 互补低电平有效 */
} TMR_OC_NPOLARITY_T;typedef enum
{TMR_OC_IDLE_STATE_RESET,		/* 空闲时为低电平 */TMR_OC_IDLE_STATE_SET			/* 空闲时为高电平 */
} TMR_OC_IDLE_STATE_T;typedef enum
{TMR_OC_NIDLE_STATE_RESET,		/* 互补空闲时为低电平 */TMR_OC_NIDLE_STATE_SET			/* 互补空闲时为高电平 */
} TMR_OC_NIDLE_STATE_T;typedef struct
{TMR_OC_MODE_T			mode;			/* 模式 */TMR_OC_STATE_T			outputState;	/* 输出状态 */TMR_OC_NSTATE_T			outputNState;	/* 互补通道输出状态 */TMR_OC_POLARITY_T		polarity;		/* 极性 */TMR_OC_NPOLARITY_T		nPolarity;		/* 互补通道极性 */TMR_OC_IDLE_STATE_T		idleState;		/* 空闲状态 */TMR_OC_NIDLE_STATE_T	nIdleState;		/* 互补通道空闲状态 */uint16_t					pulse;		/* 比较值 */
} TMR_OCConfig_T;该函数的使用实例,如下所示:
#include "apm32e10x.h"
#include "apm32e10x_tmr.h"	void example_fun(void)
{TMR_OCConfig_T tmr_oc_init_struct;/* 配置TMR1输出比较通道1 */tmr_oc_init_struct.mode			 = TMR_OC_MODE_PWM1;tmr_oc_init_struct.outputState	 = TMR_OC_STATE_ENABLE;tmr_oc_init_struct.outputNState = TMR_OC_NSTATE_ENABLE;tmr_oc_init_struct.polarity		 = TMR_OC_POLARITY_LOW;tmr_oc_init_struct.nPolarity	 = TMR_OC_NPOLARITY_HIGH;tmr_oc_init_struct.idleState	 = TMR_OC_IDLE_STATE_RESET;tmr_oc_init_struct.nIdleState	 = TMR_OC_NIDLE_STATE_RESET;tmr_oc_init_struct.pulse		 = 255;TMR_ConfigOC1(TMR1, &tmr_oc_init_struct);
}

③:使能TMR
请见第16.2.1小节中使能TMR的相关内容。
④:使能捕获比较通道
该函数用于使能捕获比较通道,其函数原型如下所示:
void TMR_EnableCCxChannel(TMR_T* tmr, TMR_CHANNEL_T channel);
该函数的形参描述,如下表所示:
在这里插入图片描述

表18.2.1.3 函数TMR_EnableCCxChannel()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.4 函数TMR_EnableCCxChannel()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{/* 使能TMR1捕获比较通道1 */TMR_EnableCCxChannel(TMR1, TMR_CHANNEL_1);
}
⑤:配置捕获比较值
该函数用于配置TMR指定通道的捕获比较值,其函数原型如下所示:
void TMR_ConfigCompare1(TMR_T* tmr, uint16_t compare1)
void TMR_ConfigCompare2(TMR_T* tmr, uint16_t compare2)
void TMR_ConfigCompare3(TMR_T* tmr, uint16_t compare3)
void TMR_ConfigCompare4(TMR_T* tmr, uint16_t compare4)

该函数的形参描述,如下表所示:
形参 描述
tmr 指向TMR外设结构体的指针
例如:TMR1、TMR2等(在apm32e10x.h文件中有定义)
compare x 捕获比较值
表18.2.1.5 函数TMR_ConfigComparen()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
无 无
表18.2.1.6 函数TMR_ConfigComparen()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_tmr.h"void example_fun(void)
{/* 配置TMR1捕获比较寄存器1的值 */TMR_ConfigCompare1(TMR1, 200);
}

18.2.2 通用定时器驱动
本章实验的通用定时器驱动主要负责向应用层提供通用定时器的初始化函数。本章实验中,通用定时器驱动的驱动代码包括gtmr.c和gtmr.h两个文件。
通用定时器驱动中,对GPIO、TMR的相关宏定义,如下所示:
/* 通用定时器PWM输出引脚定义 */

#define GTMR_TMRX_PWM_CHY_GPIO_PORT         GPIOB
#define GTMR_TMRX_PWM_CHY_GPIO_PIN          GPIO_PIN_5
#define GTMR_TMRX_PWM_CHY_GPIO_REMAP()      do{ GPIO_ConfigPinRemap(GPIO_PARTIAL_REMAP_TMR3); }while(0)
#define GTMR_TMRX_PWM_CHY_GPIO_CLK_ENABLE() do{ RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOB); }while(0)/* 通用定时器定义 */ 
#define GTMR_TMRX_PWM                       TMR3
#define GTMR_TMRX_PWM_CHY                   TMR_CHANNEL_2
#define GTMR_TMRX_INT_CLK_ENABLE()          do{ RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR3); }while(0)
通用定时器驱动中TMR3的初始化函数,如下所示:
/*** @brief       初始化通用定时器通道与PWM* @note*              通用定时器的时钟来自APB1,当PPRE1 ≥ 2分频的时候*              通用定时器的时钟为APB1时钟的2倍, 而APB1为60M,所以定时器时钟 = 120Mhz*              定时器溢出时间计算方法: Tout = ((arr + 1) * (psc + 1)) / Ft us.*              Ft=定时器工作频率,单位:Mhz** @param       arr: 自动重装值。* @param       psc: 时钟预分频数。* @retval      无*/
void gtmr_tmrx_pwm_chy_init(uint16_t arr, uint16_t psc)
{GPIO_Config_T gpio_init_struct;TMR_BaseConfig_T tmr_init_struct;TMR_OCConfig_T tmr_oc_init_struct;/* 使能时钟 */GTMR_TMRX_PWM_CHY_GPIO_CLK_ENABLE();                    /* 使能GPIOB时钟 */GTMR_TMRX_INT_CLK_ENABLE();                             /* 使能TIM时钟 */RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_AFIO);        /* 使能复用时钟 *//* 配置PWM输出引脚 */
/* 初始化IO口为复用功能 */gpio_init_struct.pin = GTMR_TMRX_PWM_CHY_GPIO_PIN;gpio_init_struct.mode = GPIO_MODE_AF_PP;                /* 复用推挽 */
gpio_init_struct.speed = GPIO_SPEED_50MHz;              /* 高速 */
/* 初始化LED引脚 */GPIO_Config(GTMR_TMRX_PWM_CHY_GPIO_PORT, &gpio_init_struct);/* 配置引脚复用功能 */
/* IO口REMAP设置, 是否必要查看头文件配置的说明 */GTMR_TMRX_PWM_CHY_GPIO_REMAP();/* 配置通用定时器 */tmr_init_struct.countMode = TMR_COUNTER_MODE_UP;        /* 递增计数模式 */tmr_init_struct.clockDivision = TMR_CLOCK_DIV_1;        /* 时钟分频系数 */tmr_init_struct.period = arr;                           /* 自动装载值 */tmr_init_struct.division = psc;                         /* 设置预分频器 */TMR_ConfigTimeBase(GTMR_TMRX_PWM, &tmr_init_struct);    /* 初始化通用定时器 *//* 配置通用定时器PWM输出 */tmr_oc_init_struct.mode = TMR_OC_MODE_PWM1;             /* 模式选择PWM1 */tmr_oc_init_struct.outputState = TMR_OC_STATE_ENABLE;   /* 使能输出 */tmr_oc_init_struct.outputNState = TMR_OC_NSTATE_DISABLE;/* 失能互补输出 */tmr_oc_init_struct.polarity = TMR_OC_POLARITY_LOW;      /* 输出极性 */tmr_oc_init_struct.nPolarity = TMR_OC_NPOLARITY_LOW;    /* 互补输出极性 */
tmr_oc_init_struct.idleState = TMR_OC_IDLE_STATE_RESET; /* 输出比较空闲状态 */
/* 互补输出比较空闲状态 */
tmr_oc_init_struct.nIdleState = TMR_OC_NIDLE_STATE_RESET;
/* 设置比较值,此值用来确定占空比,默认比较值为自动重装载值的一半,即占空比为50% */
tmr_oc_init_struct.pulse = arr / 2;                              TMR_ConfigOC2(GTMR_TMRX_PWM, &tmr_oc_init_struct);     /* 配置通用定时器通道 *//* 使能通用定时器及其自动重装载 */TMR_EnableAUTOReload(GTMR_TMRX_PWM);                   /* 使能自动重装载 */TMR_Enable(GTMR_TMRX_PWM);                             /* 使能通用定时器 */
}

从TMR3的初始化代码中可以看到,我们不仅配置了TMR3的自动重装载值和预分频器数值等基本参数,还配置了TMR3的输出比较通道2。因为需要使用GPIO引脚输出PWM,所以对应的GPIO引脚同样配置了复用功能。
18.2.3 实验应用代码
本实验的应用代码,如下所示:

int main(void)
{uint8_t dir = 1;uint16_t ledrpwmval = 0;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);  /* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);                         /* 配置系统时钟 */delay_init(120);                                  /* 初始化延时功能 */
usart_init(115200);                               /* 初始化串口 */
/* 初始化通用定时器通道与PWM */gtmr_tmrx_pwm_chy_init(500 - 1, 60 - 1);while (1){delay_ms(10);if (dir){
/* dir==1,ledrpwmval递增 */ledrpwmval ++;}else{
/* dir==0,ledrpwmval递减 */ledrpwmval --;}if (ledrpwmval > 300){/* ledrpwmval到达300后,方向改为递减 */dir = 0;}if (ledrpwmval == 0){/* ledrpwmval递减到0后,方向改为递增 */dir = 1;}/* 修改比较值控制占空比 */TMR_ConfigCompare2(GTMR_TMRX_PWM, ledrpwmval);}
}

从上面的代码中可以看到,在初始化完TMR3输出PWM后,就不断地改变TMR3通道2的比较值,以达到改变PWM占功比的目的。又因为PWM由PB5引脚输出,PB5引脚连接至LED0,所以LED0的亮度也会随之发生变化,从而实现呼吸灯的效果。
18.3 下载验证
在完成编译和烧录后,可以看到板子上的LED0先由暗再逐渐变亮,以此循环,实现了呼吸灯的效果。

这篇关于【正点原子STM32连载】第十八章 通用定时器PWM输出实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546573

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl