焦海洋的贝叶斯拖鞋概率

2023-12-28 14:10
文章标签 贝叶斯 概率 海洋 拖鞋

本文主要是介绍焦海洋的贝叶斯拖鞋概率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述在这里插入图片描述

这篇关于焦海洋的贝叶斯拖鞋概率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546213

相关文章

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

概率DP (由一道绿题引起的若干问题。目前为一些老题,蒟蒻的尝试学习1.0)

概率DP: 利用动态规划去解决 概率 期望 的题目。 概率DP 求概率(采用顺推) 从 初始状态推向结果,同一般的DP类似,只是经历了概率论知识的包装。 老题: 添加链接描述 题意: 袋子里有w只白鼠,b只黑鼠,A和B轮流从袋子里抓,谁先抓到白色谁就赢。A每次随机抓一只,B每次随机 抓完一只后 会有另外一只随机老鼠跑出来。如果两个人都没有抓到白色,那么B赢。A先抓,问A赢得概率。 w b 均在

2024国赛论文拿奖快对照这几点及评阅要点,勿踩雷区!(国赛最后冲刺,提高获奖概率)

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 2024“高教社杯”全国大学生数学建模竞赛已过去第三个夜晚,小伙伴们都累了没有,如果感到思维滞涩,别忘了稍作休息,放松一下自己,准备迎接国赛非常重要的收尾阶段——论文。 国赛这几天的努力最后都

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

HDU 4035 Maze (树状dp + 概率)

OJ题目 : click here ~~~ 题目分析 :这篇文章已经说的很好很好了 , 直接借用 ,猛戳~~ int n;double k[10002] , e[10002];double A[10002] , B[10002] , C[10002];vector<int> List[10002];bool dfs(int u , int father){if(List[u].s

前端自查【知识点】(高概率)2024最新版

HTML 如何理解 HTML 语义化 ? 仅通过标签便能判断内容的类型,特别是区分标题、段落、图片和表格 增加代码可读性(让人更容易读懂)对SEO更加友好 (让搜索引擎更容易读懂) HTML有哪些内联元素和块状元素 ? 内联元素 宽度由内容决定 display :inline 若非替换元素,不能设置宽高 img,span , a 等 display :inline-bl

【校招面经】统计与概率基础 part2

十六、对偶问题 线性规划有一个有趣的特性,就是任何一个求极大的问题都有一个与其匹配的求极小的线性规划问题。 例;原问题为 MAX X=8*Z1+10*Z2+2*Z3 s.t. 2*Z1+1*Z2+3*Z3 〈=70 4*Z1+2*Z2+2*Z3 〈=80 3*Z1+ 1*Z3 〈=15 2*Z1+2*Z2 〈=50 Z1,Z2,Z3 〉=0 Z则其对偶问题为 MIN =70*Y

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝