使用vsearch进行16s扩增子高通量序列分析步骤

2023-12-28 04:20

本文主要是介绍使用vsearch进行16s扩增子高通量序列分析步骤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、vsearch分析工具介绍:

        VSEARCH是一个开源免费的64位,无内存限制的扩增子数据处理分析软件。(点到为止,其他的建议大家参考原文献和网站)

        github:GitHub - torognes/vsearch: Versatile open-source tool for microbiome analysis

        最新文献:Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. doi:10.1101/081257

        二进制文件下载(直接复制到目录就可以开始运行的):Release VSEARCH 2.23.0 · torognes/vsearch · GitHub

2、vsearch 安装:

        建议大家直接下载二进制文件,github有时候不通,可以使用本站链接下载

        https://download.csdn.net/download/zrc_xiaoguo/88404546

        注意事项:无论使用编译安装还是使用二进制直接复制运行,都要注意安装对应版本的依赖库,出现报错时参考一下github里安装指定依赖, 高版本的vesearch对应的glibc也较高,可能需要重新编译新版本的zlib之类的库(如有不会调试的,欢迎骚扰!)

        安装完后,将指定安装目录加入系统环境,集群或超算建议使用共享目录,多节点同时运行,方便后面直接运行,安装好后可查看版本:

   3、vsearch分析步骤:按顺序

###双端配对,使用参数mergepairs ,与usearch使用方法一致,但注意加参数的时候的格式
vsearch --fastq_mergepairs fastq_1.fq --reverse fastq_2.fq --fastqout merged.16s1.fq --relabel @
# label可以按自己喜好,但要注意与后面的label提取对应,一般不建议修改

merge 结果: 注意merged后面的百分数,正常应该比较高,如果远低于其他文献或者自己其他样品,需要注意       

翻转序列,并与原序列合并:  

###翻转序列,并将翻转序列与原序列合并到一个文件
vsearch --fastx_revcomp merged.16S1.fq --fastqout merged.16S1_rc.fq
#多个文件可使用for语句#翻转完成后直接合并原序列
cat merged.16S1.fq merged.16S1_rc.fq >mergedFR.16s1.fq
#或
cat merged.16S1{,_rc}.fq>mergedFR.16s1.fq
###合并后查看文件大小是否为原来两倍大小

使用python脚本fastq_strip_barcode_relabel2.py提取对应barcode的序列,并重新标记label为16s

python脚本参考,大家可自行到usearch或其他地方下载:扩增子分析中需要使用到的python脚本资源-CSDN文库

###注意python需Python2环境,脚本位置,barcode序列(这里用的是16S其中的典型序列之一,以及样品barcode文件,文件格式间下方:
python /py/fastq_strip_barcode_relabel.py mergedFR.16S1.fq GTGCCAGCMGCCGCGGTAA barcode.txt B16s > barcode.relabel.16S1.fq###barcode.txt 格式
>F_2
AGTTCATACGGC
>F_3
TCGCTTTAACCT
>F_4

基于barcode分离出的样品序列单独再次翻转,并加上label后缀

###
vsearch --fastx_revcomp barcode.relabel.16S1.fq --label_suffix _RC --fastqout barcode.relabeled.16S1_rc.fq

  再利用反向barcode提取分样:

###这里的反向barcode特征序列和样品barcode按自己实际替换。
python /nfs/sopt/py/fastq_strip_barcode_relabel2.py barcode.relabeled.16S1_rc.fq GGACTACHVGGGTWTCTAAT barcode_16S_r2.txt B16s > mergedFR.relabeled2.16S1.fq

将同一批不重复样品的所有正反分样的序列合并到一起进行otu分析和物种分类 

###合并所有已标记样品名称的序列
cat mergedFR.relabeled2.16S1.fq mergedFR.relabeled2.16S1.fq {...} > mergedFR.relabel.16s.fq###fastq过滤,去除读长较短的序列
vsearch --fastq_filter mergedFR.relabel.16s.fq --fastq_maxee 0.5 --fastq_minlen 250 --fastq_trunclen 250 --fastq_maxns 1 --fastaout mergedFR.relabel.16S.QC.fa###获取无重复序列unique_seqs
vsearch --derep_fulllength mergedFR.relabel.16S.QC.fa --sizeout --relabel Uniq --output unique_seqs.fa###unique序列排序,加速后续分析
vsearch --sortbysize unique_seqs.fa --output sorted.16s.fa --minsize 2###使用unoise3处理输出otu序列和tab表,新版本特性
###现在版本的vsearch还是alpha版本,所以先用usearch开放版本处理
usearch -unoise3 sorted.16s.fa -zotus zotus.fa -tabbedout uniose3.txt###同样使用usearch开放版本处理uniose3聚类模块,获取otutable
usearch -unoise3 unique_seqs.fa -zotus ref_zotus.fa -minsize 9
usearch -otutab mergedFR.relabel.16S.QC.fa -zotus zotus.fa -otutabout otu_table_16S_unoise3.txt###同样可以使用vsearch的usearch-global模块获取数据otu丰度表
vsearch --usearch_global mergedFR.relabel.16S.QC.fa --db zotus.fa --id 0.99 --otutabout otus_counts.txt###使用rdp数据库的classifier进行物种分类,可按服务器实际资源调整内存
java -Xmx8g -jar /rdp_classifier_2.12/dist/classifier.jar classify -c 0.5 -f filterbyconf -o classification.filterbyconf.16s.txt zotus.fa

   

以下是私房菜,全vsearch分析流程,可放入脚本直接运行,敬请收藏:

###python脚本环境需要py2,使用前可以先使用conda激活conda环境,或者直接在py2环境下运行
###序列文件,barcode及特征序列请根据自己实际修改;vsearch --version
echo ---------------------------------------------
date
echo Mergepairs and relabel with "@"
vsearch --fastq_mergepairs ./datalink/fastq_1.fq \--reverse ./datalink/fastq_2.fq \--fastqout a.merged.fq \--relabel @
echo Mergepairs over!
echo ---------------------------------------------
date
echo ---------------------------------------------
vsearch --fastx_revcomp a.merged.fq \--label_suffix _RC \--fastqout a.merged_rc.fq
echo ---------------------------------------------
date
echo ---------------------------------------------
cat a.merged.fq a.merged_rc.fq >  a.mergedFR.fq
echo --------------------------------------------
python ./testlink/py/fastq_strip_barcode_relabel2.py a.mergedFR.fq \GGACTACHVGGGTWTCTAAT ./datalink/barcode_16S.txt B16S > b.barcode.16S.fq
echo Barcode_16S over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Revcomp 16s start
vsearch --fastx_revcomp b.barcode.16S.fq \--fastqout c.barcode.16S_rc.fq
echo Revcomp 16s over!
echo ---------------------------------------------
date
echo ---------------------------------------------
cat b.barcode.16S.fq c.barcode.16S_rc.fq > c.barcode.16S_FR.fqecho Fastq filter start!
vsearch --fastq_filter c.barcode.16S_FR.fq \--fastq_maxee 0.5 \--fastq_minlen 250 \--fastq_trunclen 250 \--fastq_maxns 1 \--fastaout d.barcode.16S_FR.QC.fa
echo Fastq filter over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Derep start! Dereplicate across samples and remove singletons.
vsearch --derep_fulllength d.barcode.16S_FR.QC.fa \--output e.dereped.16S.fa \--sizeout
echo Derep over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Sortbysize!        
vsearch --sortbysize e.dereped.16S.fa \--output f.sorted.16S.fa \--minsize 2
echo ---------------------------------------------
echo  Cluster_size start! Precluster at 97% before chimera detection.
vsearch --cluster_size f.sorted.16S.fa \--id 0.97 \--strand plus \--sizein \--sizeout \--relabel OTU_ \--uc g.cluster_size.16S.uc \--centroids g.cluster_size.16S.fa
echo Cluster_size over!
echo ---------------------------------------------
date
echo ---------------------------------------------
echo De novo chimera detection.
vsearch --uchime_denovo g.cluster_size.16S.fa \--sizein \--sizeout \--nonchimeras h.denovo.nonchimeras.16S.fa
echo Obtained unique sequences after de novo chimera detection.
echo ---------------------------------------------
date
echo ---------------------------------------------
echo Usearch_global work start!
vsearch --usearch_global d.barcode.16S_FR.QC.fa \--db h.denovo.nonchimeras.16S.fa \--strand plus \--id 0.97 \--maxaccepts 4 \--maxrejects 128 \--uc i.map_rdp_16s.uc
echo Global over!
date
echo ---------------------------------------------
echo Convert .uc to .txt
python ./testlink/py/uc2otutab.py i.map_rdp_16s.uc > j.OTU_table_16S.txt
echo Convert over!
date
echo ---------------------------------------------
echo Start RDP classify!
java -Xmx200g \-jar /rdp_classifier_2.12/dist/classifier.jar classify \-c 0.5 \-f filterbyconf \-o k.class.filterbyconf.16S.txt h.denovo.nonchimeras.16S.fa
echo RDP Classify work over!
date
echo All 16S sequences processes done!

有不足支出敬请指正!!

这篇关于使用vsearch进行16s扩增子高通量序列分析步骤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545056

相关文章

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Java发送邮件到QQ邮箱的完整指南

《使用Java发送邮件到QQ邮箱的完整指南》在现代软件开发中,邮件发送功能是一个常见的需求,无论是用户注册验证、密码重置,还是系统通知,邮件都是一种重要的通信方式,本文将详细介绍如何使用Java编写程... 目录引言1. 准备工作1.1 获取QQ邮箱的SMTP授权码1.2 添加JavaMail依赖2. 实现

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、