java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文

2023-12-28 04:20

本文主要是介绍java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“split_libraries.py” 和“split_libraries_fastq.py”实现数据拆分和数据过滤的双重目的。Mothur利用“Trim.seqs”。不过QIIME和Mothur都不能直接处理sff文件(454下机产生的数据格式),不过可各自利用“process_sff.py”和Sffinfo将sff格式转换为FASTA和QUAL文件。

数据过滤考虑的参数有:minimum average quality score allowed in a read、maximum number of ambiguous bases allowed、minimum and maximum sequence length、maximum length of homopolymer allowed、maximum mismatches inprimer or barcode allowed、whether to truncate reverse primer, and so on.

(2)Denoise and chimera checking

16s建库的pcr过程、测序过程均会导致序列出现错误,在分析过程过程中需要有效排除这种错误。测序误差矫正常用的工具有Denoiser(implemented in QIIME)、AmpliconNoise、Acacia、Pre.cluster(implemented in Mothur)。嵌合体查找的工具有ChimeraSlayer、UCHIME、Persus、DECIPHER,ChimeraSlayer、UCHIME、Persus在mothur中均可调用。在这些工具中,存在有待于优化的问题(these different methods often disagree with one another on the list of identified chimeras,probably because of their different mechanisms or algorithms. More efforts are required to evaluate these methods and coordinate their inconsistencies in chimera identification.)

328d5170a2a19271a5e955cef593521f.png

在分析中有个关于古细菌序列的情况需要注意:a very small proportion of archaeal sequences may be generated for 16S rRNA gene amplicon datasets amplified with bacteria-specific primers. These unexpected sequences should be identified after denoising and chimeraremoval, and are advised to be discarded before subsequent data normalization.

(3)Data normalization

测序深度不理想和不均匀的话会对alpha多样性及beta多样性均有影响。Uneven sequencing depth can affect diversity estimates in a single sample (i.e.,alpha diversity), as well as comparisons across different samples (i.e., beta diversity), thus data normalization is required. 对于此问题有两种处理策略,分别是relative abundance and random sampling (i.e., rarefaction),in addition, z-score亦用于normalization的过程中。但不同的方法均会有缺点。

(4)Picking OTUs and representative sequences

OTU的界定主要根据序列的一致性进行,(The OTUs are picked based on sequence identity, and various identity cutoffs of 16S rRNA gene have been used for different taxonomic ranks. For example, identity cutoffs recommended by MEGAN are 99 % for species, 97 % for genus,95 % for family, and 90 % for order level, respectively)。OTU界定时选择的工具与算法对后期分析有很大影响(The OTU picking strategy and algorithms have significant effects in the downstream data interpretation. )根据分析过程中是否使用数据库,OTU界定的策略可分为de novo、closed reference和open reference。在  OTU界定中有很多聚类的方法,There are many clustering or alignment tools available for OTU picking, such as Uclust, cd-hit, BLAST, mothur, usearch, and prefix/suffix. These tools are implemented in QIIME. Among them, the mothur method contains three clustering algorithms to pick de novo OTUs, namely, nearest neighbor, furthest neighbor, or average neighbor. 当序列聚类好后,代表了一个OTU,接下来就是从这个OTU找到代表序列,一种做法是a representative sequence can be a random, the longest, the most abundant(as default in QIIME), 另一种操作方法是the first sequence in an OTU cluster.  还有一种策略是the distance method in mothur identifies the   sequence with the smallest maximum distance to the other sequences as the representative sequence.

(5)Taxonomic assignment

taxonomic assignment的策略有:(1)word match,如RDP classfier,(2)best hit,(3)Lowest Common Ancestor,如MEGAN、SINA Alignment Service.

(6)Phylogenetic analysis

Phylogenetic relationships一般可以用树来表示,phylogenetic relationships主要是通过序列比对来实现的,序列比对的工具有ClustalW, MUSCLE, Clustal Omega, Kalign, T-COFFEE, COBLAT和FastTree. 目前针对16s rRNA NGS数据的分析工具都可以实现,如MEGA,RAxML,MRBAYES,PhyML,TreeView,Clearcut,FitTree. 其中RAxMLand PhyML are the most widely used programs for maximum-likelihood phylogenetic analysis, probably because they are specifically designed and optimized for such purpose.

(7)Alpha- and beta-diversity analyses

alpha多样性有众多指标可以表示,在mothur中有Shannon, Berger-Parker,Simpson, Q statistic; observed richness, Chao1, ACE, and jackknife。而在QIIME中,有phylogenetic diversity (PD)-whole tree, chao1, and observed species.

还有一种物种丰度的比较方法:rarefaction curve. QIIME中主要用“single_rarefaction.py”、 “multiple_rarefaction.py”,在mothur中主要用“Rarefaction.single”和“Rarefaction.shared”.

beta多样性计算主要反映不同样本之间的差异度,several distance metrics, such as Unifrac, Bray-Curtis, Euclidean,Jaccard index, Yue & Clayton, and Morisita-Horn, have been often employed. beta多样性计算根据是否考虑OTU的相对丰度,可分为定量指数和定性指数。

(8)Statistical and network analysis

在Two-sample/group中,多考虑t-test。在其中需要注意,Particularly for independent two-samplet-test, independence and equal variances (which canbe tested by F-test, Levene’s test, etc.) of two populations arerequired. In the case of non-normal distribution of data sets,nonparametric two-sample tests robust to data non-normality,such as Wilcoxon signed-rank test, and Mann-Whitney U testare applicable for significance testing of difference betweengroup medians.

在Multiple-sample/group tests中,ANOVA。

(9)Clustering and classification

clustering可以分析样品之间的亲疏关系。classfication的策略用来对样品进行类别判定。

(10)Ordination analysis

在样本的相似度和距离计算完后,可以利用principal component analysis (PCA), principal coordinates analysis(PCoA, also known as metric multidimensional scaling), Nonmetric multidimensional scaling (NMDS), canonical correspondence analysis (CCA), linear discriminantanalysis (LDA), and redundancy analysis (RDA)等构建样本间的关系。

(11)Network-based modeling

与基因表达、代谢分子、蛋白等数据一起分析共表达网路或者共表达模式(co-occurrence and co-exclusion patterns)

参考文章:JuF,ZhangT.16srRNAgenehigh throughputsequencingdataminingofmicrobiotadiversityandinteractions,ApplMicrobiolBiotechnol.2015,99(10):4119-4129

这篇关于java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545055

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF