java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文

2023-12-28 04:20

本文主要是介绍java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“split_libraries.py” 和“split_libraries_fastq.py”实现数据拆分和数据过滤的双重目的。Mothur利用“Trim.seqs”。不过QIIME和Mothur都不能直接处理sff文件(454下机产生的数据格式),不过可各自利用“process_sff.py”和Sffinfo将sff格式转换为FASTA和QUAL文件。

数据过滤考虑的参数有:minimum average quality score allowed in a read、maximum number of ambiguous bases allowed、minimum and maximum sequence length、maximum length of homopolymer allowed、maximum mismatches inprimer or barcode allowed、whether to truncate reverse primer, and so on.

(2)Denoise and chimera checking

16s建库的pcr过程、测序过程均会导致序列出现错误,在分析过程过程中需要有效排除这种错误。测序误差矫正常用的工具有Denoiser(implemented in QIIME)、AmpliconNoise、Acacia、Pre.cluster(implemented in Mothur)。嵌合体查找的工具有ChimeraSlayer、UCHIME、Persus、DECIPHER,ChimeraSlayer、UCHIME、Persus在mothur中均可调用。在这些工具中,存在有待于优化的问题(these different methods often disagree with one another on the list of identified chimeras,probably because of their different mechanisms or algorithms. More efforts are required to evaluate these methods and coordinate their inconsistencies in chimera identification.)

328d5170a2a19271a5e955cef593521f.png

在分析中有个关于古细菌序列的情况需要注意:a very small proportion of archaeal sequences may be generated for 16S rRNA gene amplicon datasets amplified with bacteria-specific primers. These unexpected sequences should be identified after denoising and chimeraremoval, and are advised to be discarded before subsequent data normalization.

(3)Data normalization

测序深度不理想和不均匀的话会对alpha多样性及beta多样性均有影响。Uneven sequencing depth can affect diversity estimates in a single sample (i.e.,alpha diversity), as well as comparisons across different samples (i.e., beta diversity), thus data normalization is required. 对于此问题有两种处理策略,分别是relative abundance and random sampling (i.e., rarefaction),in addition, z-score亦用于normalization的过程中。但不同的方法均会有缺点。

(4)Picking OTUs and representative sequences

OTU的界定主要根据序列的一致性进行,(The OTUs are picked based on sequence identity, and various identity cutoffs of 16S rRNA gene have been used for different taxonomic ranks. For example, identity cutoffs recommended by MEGAN are 99 % for species, 97 % for genus,95 % for family, and 90 % for order level, respectively)。OTU界定时选择的工具与算法对后期分析有很大影响(The OTU picking strategy and algorithms have significant effects in the downstream data interpretation. )根据分析过程中是否使用数据库,OTU界定的策略可分为de novo、closed reference和open reference。在  OTU界定中有很多聚类的方法,There are many clustering or alignment tools available for OTU picking, such as Uclust, cd-hit, BLAST, mothur, usearch, and prefix/suffix. These tools are implemented in QIIME. Among them, the mothur method contains three clustering algorithms to pick de novo OTUs, namely, nearest neighbor, furthest neighbor, or average neighbor. 当序列聚类好后,代表了一个OTU,接下来就是从这个OTU找到代表序列,一种做法是a representative sequence can be a random, the longest, the most abundant(as default in QIIME), 另一种操作方法是the first sequence in an OTU cluster.  还有一种策略是the distance method in mothur identifies the   sequence with the smallest maximum distance to the other sequences as the representative sequence.

(5)Taxonomic assignment

taxonomic assignment的策略有:(1)word match,如RDP classfier,(2)best hit,(3)Lowest Common Ancestor,如MEGAN、SINA Alignment Service.

(6)Phylogenetic analysis

Phylogenetic relationships一般可以用树来表示,phylogenetic relationships主要是通过序列比对来实现的,序列比对的工具有ClustalW, MUSCLE, Clustal Omega, Kalign, T-COFFEE, COBLAT和FastTree. 目前针对16s rRNA NGS数据的分析工具都可以实现,如MEGA,RAxML,MRBAYES,PhyML,TreeView,Clearcut,FitTree. 其中RAxMLand PhyML are the most widely used programs for maximum-likelihood phylogenetic analysis, probably because they are specifically designed and optimized for such purpose.

(7)Alpha- and beta-diversity analyses

alpha多样性有众多指标可以表示,在mothur中有Shannon, Berger-Parker,Simpson, Q statistic; observed richness, Chao1, ACE, and jackknife。而在QIIME中,有phylogenetic diversity (PD)-whole tree, chao1, and observed species.

还有一种物种丰度的比较方法:rarefaction curve. QIIME中主要用“single_rarefaction.py”、 “multiple_rarefaction.py”,在mothur中主要用“Rarefaction.single”和“Rarefaction.shared”.

beta多样性计算主要反映不同样本之间的差异度,several distance metrics, such as Unifrac, Bray-Curtis, Euclidean,Jaccard index, Yue & Clayton, and Morisita-Horn, have been often employed. beta多样性计算根据是否考虑OTU的相对丰度,可分为定量指数和定性指数。

(8)Statistical and network analysis

在Two-sample/group中,多考虑t-test。在其中需要注意,Particularly for independent two-samplet-test, independence and equal variances (which canbe tested by F-test, Levene’s test, etc.) of two populations arerequired. In the case of non-normal distribution of data sets,nonparametric two-sample tests robust to data non-normality,such as Wilcoxon signed-rank test, and Mann-Whitney U testare applicable for significance testing of difference betweengroup medians.

在Multiple-sample/group tests中,ANOVA。

(9)Clustering and classification

clustering可以分析样品之间的亲疏关系。classfication的策略用来对样品进行类别判定。

(10)Ordination analysis

在样本的相似度和距离计算完后,可以利用principal component analysis (PCA), principal coordinates analysis(PCoA, also known as metric multidimensional scaling), Nonmetric multidimensional scaling (NMDS), canonical correspondence analysis (CCA), linear discriminantanalysis (LDA), and redundancy analysis (RDA)等构建样本间的关系。

(11)Network-based modeling

与基因表达、代谢分子、蛋白等数据一起分析共表达网路或者共表达模式(co-occurrence and co-exclusion patterns)

参考文章:JuF,ZhangT.16srRNAgenehigh throughputsequencingdataminingofmicrobiotadiversityandinteractions,ApplMicrobiolBiotechnol.2015,99(10):4119-4129

这篇关于java fit 16s,科学网—16s rRNA分析流程和工具的介绍 - 肖斌的博文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545055

相关文章

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

解决SpringBoot启动报错:Failed to load property source from location 'classpath:/application.yml'

《解决SpringBoot启动报错:Failedtoloadpropertysourcefromlocationclasspath:/application.yml问题》这篇文章主要介绍... 目录在启动SpringBoot项目时报如下错误原因可能是1.yml中语法错误2.yml文件格式是GBK总结在启动S

Spring中配置ContextLoaderListener方式

《Spring中配置ContextLoaderListener方式》:本文主要介绍Spring中配置ContextLoaderListener方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录Spring中配置ContextLoaderLishttp://www.chinasem.cntene

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.