DataWhale-(scikit-learn教程)-Task08(可视化总结)-202112

2023-12-27 21:48

本文主要是介绍DataWhale-(scikit-learn教程)-Task08(可视化总结)-202112,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

西瓜书代码实战

一、决策树可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import tree
import graphviz
# 加载数据集
data = load_iris() 
# 转换成.DataFrame形式
df = pd.DataFrame(data.data, columns = data.feature_names)
# 添加品种列
df['Species'] = data.target# 用数值替代品种名作为标签
target = np.unique(data.target)
target_names = np.unique(data.target_names)
targets = dict(zip(target, target_names))
df['Species'] = df['Species'].replace(targets)# 提取数据和标签
X = df.drop(columns="Species")
y = df["Species"]
feature_names = X.columns
labels = y.unique()X_train, test_x, y_train, test_lab = train_test_split(X,y,test_size = 0.4,random_state = 42)
model = DecisionTreeClassifier(max_depth =3, random_state = 42)
model.fit(X_train, y_train)  

1. 文字表示

# 以文字形式输出树     
text_representation = tree.export_text(model)
print(text_representation)

在这里插入图片描述

2. plot_tree函数

# 用图片画出
plt.figure(figsize=(30,10), facecolor ='g') #
a = tree.plot_tree(model,feature_names = feature_names,class_names = labels,rounded = True,filled = True,fontsize=14)
plt.show()  

在这里插入图片描述

3. graphviz

# DOT data
dot_data = tree.export_graphviz(model, out_file=None, feature_names=data.feature_names,  class_names=data.target_names,filled=True)# Draw graph
graph = graphviz.Source(dot_data, format="png") 
graph.render('lense')

在这里插入图片描述

二、xgboost可视化

import xgboost
from xgboost import XGBClassifier
from sklearn.datasets import load_irisiris = load_iris()
x, y = iris.data, iris.target
model = XGBClassifier()
model.fit(x, y)

1, 特征重要性

# 如果输入是没有表头的array,会自动以f1,f2开始,需要更换表头
# 画树结构图的时候也需要替换表头
model.get_booster().feature_names = iris.feature_names
# max_num_features指定排名最靠前的多少特征
# height=0.2指定柱状图每个柱子的粗细,默认是0.2
# importance_type='weight'默认是用特征子树中的出现次数(被选择次数),还有"gain"和"cover"
xgboost.plot_importance(model, max_num_features=5)

在这里插入图片描述

2. 画树结构

xgboost.to_graphviz(model, num_trees=2)  # 索引第2棵树

在这里插入图片描述

三、lgbm可视化

#LGB树展示
from sklearn.datasets import load_iris
from sklearn import tree
#import pydotplus
import graphviz
import os
import pandas as pd
import lightgbm as lgb
model=lgb.LGBMClassifier()
model.fit(iris.data,iris.target)
dot_data=lgb.create_tree_digraph(model,tree_index=0)
dot_data.format='PDF'
dot_data.render('lgb_iris_0.pdf')

在这里插入图片描述

import matplotlib.pyplot as plt
fig2 = plt.figure(figsize=(20, 20))
ax = fig2.subplots()
lgb.plot_tree(model, tree_index=1, ax=ax)
plt.show()

在这里插入图片描述

这篇关于DataWhale-(scikit-learn教程)-Task08(可视化总结)-202112的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544379

相关文章

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

SpringBoot连接Redis集群教程

《SpringBoot连接Redis集群教程》:本文主要介绍SpringBoot连接Redis集群教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 依赖2. 修改配置文件3. 创建RedisClusterConfig4. 测试总结1. 依赖 <de

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据