算法题中常用数学概念、公式、方法汇总(其四:组合学)

2023-12-27 18:04

本文主要是介绍算法题中常用数学概念、公式、方法汇总(其四:组合学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 组合学
    • 加法原理
    • 乘法原理
    • 排列组合
    • 组合恒等式
    • 二项式定理
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

组合学

加法原理

加法原理是指做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,以此类推,第n类方式有Mn种方法,那么完成这件事情共有M1 + M2 + ... + Mn种方法。

乘法原理

乘法原理是指做一件事,完成它需要分成n个步骤,做第一 步有M1种不同的方法,做第二步有M2种不同的方法,以此类推,做第n步有Mn种不同的方法。那么完成这件事共有 N = M1 × M2 × M3 × ... × Mn 种不同的方法。

排列组合

排列(arrangement/permutation)指的是,从给定个数的元素中取出指定个数的元素并进行排序的过程

组合(combination)指的是,从给定个数的元素中仅仅取出指定个数的元素的过程,不需要考虑排序问题。

考虑从n个小球中取出m个小球的问题,若

  • 这些小球两两之间是不同的(比如存在编号),那么取出的方式记为 A n m A_n^m Anm A ( n , m ) A(n,m) A(n,m),存在公式

A n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n×(n-1)×(n-2)×...×(n-m+1) = \frac{n!}{(n-m)!} Anm=n×(n1)×(n2)×...×(nm+1)=(nm)!n!

  • 这些小球两两之间是全同的,那么取出的方式记为 C n m C_n^m Cnm C ( n , m ) C(n,m) C(n,m),存在公式

C n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) m × ( m − 1 ) × ( m − 2 ) × . . . × 2 × 1 = n ! m ! ( n − m ) ! = A n m m ! C_n^m = \frac{n×(n-1)×(n-2)×...×(n-m+1)}{m×(m-1)×(m-2)×...×2×1} = \frac{n!}{m!(n-m)!} = \frac{A_n^m}{m!} Cnm=m×(m1)×(m2)×...×2×1n×(n1)×(n2)×...×(nm+1)=m!(nm)!n!=m!Anm

组合恒等式

对于组合而言,存在以下恒等式成立

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n m + C n m + 1 = C n + 1 m + 1 C_n^m + C_n^{m+1}= C_{n+1}^{m+1} Cnm+Cnm+1=Cn+1m+1
C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n

其中最后一个恒等式可以用二项式定理求证。

二项式定理

二项式定理是指,两个数之和的整数次幂可以展开为两整数的多项式之和,具体形式如下

( x + y ) n = C n 0 x 0 y n + C n 1 x 1 y n − 1 + C n 2 x 2 y n − 2 + . . . C n n − 1 x n − 1 y 1 + C n n x n y 0 = ∑ i = 0 n C n i x i y n − i (x+y)^n = C_n^0x^0y^n + C_n^1x^1y^{n-1} + C_n^2x^2y^{n-2} + ... C_n^{n-1}x^{n-1}y^1 + C_n^nx^ny^0 = \sum_{i=0}^{n}C_n^ix^iy^{n-i} (x+y)n=Cn0x0yn+Cn1x1yn1+Cn2x2yn2+...Cnn1xn1y1+Cnnxny0=i=0nCnixiyni

代入 x = 1 x =1 x=1 y = 1 y = 1 y=1,即可得到式子 C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于算法题中常用数学概念、公式、方法汇总(其四:组合学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543936

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S