sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第四周测验

本文主要是介绍sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第四周测验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程4_第4周_测验题

目录

第一题

1.面部验证只需要将新图片与1个人的面部进行比较,而面部识别则需要将新图片与K个人的面部进行比较。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第二题

2.在人脸验证中函数d(img1,img2)起什么作用?

A. 【  】只需要给出一个人的图片就可以让网络认识这个人

B. 【  】为了解决一次学习的问题

C. 【  】这可以让我们使用softmax函数来学习预测一个人的身份,在这个单元中分类的数量等于数据库中的人的数量加1

D. 【  】鉴于我们拥有的照片很少,我们需要将它运用到迁移学习中

答案:

A.【 √ 】只需要给出一个人的图片就可以让网络认识这个人

B.【 √ 】为了解决一次学习的问题

第三题

3.为了训练人脸识别系统的参数,使用包含了10万个不同的人的10万张图片的数据集进行训练是合理的。

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

第四题

4.下面哪个是三元组损失的正确定义(请把 α \alpha α也考虑进去)?

A. 【  】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2+\alpha,0) max(f(A)f(P)2f(A)f(N)2+α,0)

B. 【  】 m a x ( ∥ f ( A ) − f ( N ) ∥ 2 − ∥ f ( A ) − f ( P ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(N)\right \|^2−\left \|f(A)−f(P)\right \|^2+\alpha,0) max(f(A)f(N)2f(A)f(P)2+α,0)

C. 【  】 m a x ( ∥ f ( A ) − f ( N ) ∥ 2 − ∥ f ( A ) − f ( P ) ∥ 2 − α , 0 ) max(\left \|f(A)−f(N)\right \|^2−\left \|f(A)−f(P)\right \|^2-\alpha,0) max(f(A)f(N)2f(A)f(P)2α,0)

D. 【  】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 − α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2-\alpha,0) max(f(A)f(P)2f(A)f(N)2α,0)

答案:

A.【 √ 】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2+\alpha,0) max(f(A)f(P)2f(A)f(N)2+α,0)

第五题

5.在下图中的孪生卷积网络(Siamese network)结构图中,上下两个神经网络拥有不同的输入图像,但是其中的网络参数是完全相同的。

在这里插入图片描述

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第六题

6.你在一个拥有100种不同的分类的数据集上训练一个卷积神经网络,你想要知道是否能够找到一个对猫的图片很敏感的隐藏节点(即在能够强烈激活该节点的图像大多数都是猫的图片的节点),你更有可能在第4层找到该节点而不是在第1层更有可能找到。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第七题

7.神经风格转换被训练为有监督的学习任务,其中的目标是输入两个图像 (x),并训练一个能够输出一个新的合成图像(y)的网络。

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

第八题

8.在一个卷积网络的深层,每个通道对应一个不同的特征检测器,风格矩阵 G [ l ] G^{[l]} G[l]度量了l层中不同的特征探测器的激活(或相关)程度。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第九题

9.在神经风格转换中,在优化算法的每次迭代中更新的是什么?

A. 【  】神经网络的参数

B. 【  】生成图像G的像素值

C. 【  】正则化参数

D. 【  】内容图像C的像素值

答案:

B.【 √ 】生成图像G的像素值

第十题

10.你现在用拥有的是3D的数据,现在构建一个网络层,其输入的卷积是32×32×32×1632×32×32×16(此卷积有16个通道),对其使用3232个3×3×33×3×3的过滤器(无填充,步长为1)进行卷积操作,请问输出的卷积是多少?

A. 【  】30×30×30×32

B. 【  】不能操作,因为指定的维度不匹配,所以这个卷积步骤是不可能执行的

C. 【  】30×30×30×16

答案:

A.【 √ 】30×30×30×32

这篇关于sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第四周测验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542597

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个