BZOJ 2733 [HNOI2012]永无乡 可持久化线段树合并

2023-12-26 08:18

本文主要是介绍BZOJ 2733 [HNOI2012]永无乡 可持久化线段树合并,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2733: [HNOI2012]永无乡

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 4153   Solved: 2214
[ Submit][ Status][ Discuss]

Description

永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。 
 

Input

输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000 
 
对于 100%的数据 n≤100000,m≤n,q≤300000 
 

Output

对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。 
 

Sample Input

5 1
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3

Sample Output

-1
2
5
1
2



学了一发可持久化线段树,还有线段树合并。


题目要求一个连通块之内第k大的数字所对应的编号。区间第k大可以用可持久化线段树,连通块的连通性可以用并查集维护。当两个不同的块合并时,把这两个块对应的线段树也一起合并。

合并的时候,x和y的左儿子合在一起,右儿子合在一起,更新一下节点对应的值,就算完成合并了。


数据结构博大精深。。。


#include <cstdio>
#include <iostream>
#include <string.h>
#include <string> 
#include <map>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <algorithm>
#include <math.h>
#include <cmath>
#include <stack>
#include <iomanip>
#define mem0(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,0x3f,sizeof(a))
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
const int maxn=100005,inf=0x3f3f3f3f;  
const ll llinf=0x3f3f3f3f3f3f3f3f;   
const ld pi=acos(-1.0L);
int f[maxn],a[maxn],id[maxn];
int lc[maxn*20],rc[maxn*20],sum[maxn*20],root[maxn*20];
char s[20];
int num;int find(int now) {if (f[now]==now) return now; else {f[now]=find(f[now]);return f[now];}
}void insert(int &k,int l,int r,int val) {if (!k) k=++num;if (l==r) {sum[k]=1;} else {int mid=(l+r)/2;if (val<=mid) insert(lc[k],l,mid,val); elseinsert(rc[k],mid+1,r,val);sum[k]=sum[lc[k]]+sum[rc[k]];}
}int query(int now,int l,int r,int k) {if (l==r) {return l;} else {int mid=(l+r)/2;if (k<=sum[lc[now]]) return query(lc[now],l,mid,k);else return query(rc[now],mid+1,r,k-sum[lc[now]]);}
}int merge(int x,int y) {if (!x) return y;if (!y) return x;lc[x]=merge(lc[x],lc[y]);rc[x]=merge(rc[x],rc[y]);sum[x]=sum[lc[x]]+sum[rc[x]];return x;
}int main() {int n,m,i,j,q,x,y;num=0;scanf("%d%d",&n,&m);for (i=1;i<=n;i++) scanf("%d",&a[i]),f[i]=i;for (i=1;i<=m;i++) {scanf("%d%d",&x,&y);int fa=find(x),fb=find(y);if (fa!=fb) f[fa]=fb;}for (i=1;i<=n;i++) {insert(root[find(i)],1,n,a[i]);id[a[i]]=i;}scanf("%d",&q);for (i=1;i<=q;i++) {scanf("%s",s);if (s[0]=='Q') {scanf("%d%d",&x,&y);if (sum[root[find(x)]]<y) {printf("-1\n");continue;}int ans=query(root[find(x)],1,n,y);printf("%d\n",id[ans]);} else {scanf("%d%d",&x,&y);int fa=find(x),fb=find(y);if (fa!=fb) {f[fa]=fb;root[fb]=merge(root[fa],root[fb]);}}}return 0;
}


这篇关于BZOJ 2733 [HNOI2012]永无乡 可持久化线段树合并的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538693

相关文章

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl