达观数据比赛 第三天任务

2023-12-26 07:40

本文主要是介绍达观数据比赛 第三天任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清明节结束,恢复上班日常啦。

【任务2.2】时长: 2天

学习word2vec词向量原理并实践,用来表示文本。

我们可以把word2vec模型简单化地看成是神经网络。如下图所示, 输入是一个one-hot向量,通过中间层(不含激活函数),输出层和输入层纬度一样

 

 

Word2Vec一般分为CBOW(Continuous Bag-of-Words )与Skip-Gram两种模型。CBOW模型的训练输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量。Skip-Gram模型和CBOW的思路是反着来的,即输入是特定的一个词的词向量,而输出是特定词对应的上下文词向量。CBOW对小型数据库比较合适,而Skip-Gram在大型语料中表现更好。模型示意图如下所示:

在Python中,我们可以使用gensim库中的word2vec。函数中的参数如下所示:

sentences: 我们要分析的语料,可以是一个列表,或者从文件中遍历读出。后面我们会有从文件读出的例子。

size: 词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。

window:即词向量上下文最大距离,这个参数在我们的算法原理篇中标记为cc,window越大,则和某一词较远的词也会产生上下文关系。默认值为5。在实际使用中,可以根据实际的需求来动态调整这个window的大小。如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5,10]之间。

 sg: 即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型,是1则是Skip-Gram模型,默认是0即CBOW模型。

hs: 即我们的word2vec两个解法的选择了,如果是0, 则是Negative Sampling,是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。

negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。

cbow_mean: 仅用于CBOW在做投影的时候,为0,则算法中的xwxw为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示xwxw,默认值也是1,不推荐修改默认值。

min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。

iter: 随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。

alpha: 在随机梯度下降法中迭代的初始步长。算法原理篇中标记为ηη,默认是0.025。

min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。

 

在学习完主要函数之后,我们在Pycharm中做了简单地尝试,代码如下:

导入所需要的库

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
import gensim
import time
import pickle
import numpy as np
# read data
df = pd.read_csv('data/train_set.csv', nrows=5000)def sentence2list(sentence):return sentence.strip().split()sentences_train = list(df.loc[:, 'word_seg'].apply(sentence2list))
sentences = sentences_train
model = gensim.models.Word2Vec(sentences=sentences, size=100, window=5, min_count=5, workers=8, sg=1, iter=5)wv = model.wv
vocab_list = wv.index2word
word_idx_dict = {}
for idx, word in enumerate(vocab_list):word_idx_dict[word] = idxvectors_arr = wv.vectors
vectors_arr = np.concatenate((np.zeros(100)[np.newaxis, :], vectors_arr), axis=0)  # 第0位置的vector为'unk'的vectorprint(word_idx_dict)
print(vectors_arr)
f_wordidx = open('word_seg_word_idx_dict.pkl', 'wb')
f_vectors = open('word_seg_vectors_arr.pkl', 'wb')
pickle.dump(word_idx_dict, f_wordidx)
pickle.dump(vectors_arr, f_vectors)
f_wordidx.close()
f_vectors.close()

 

参考文献:

1. 简书 缺省之名 https://www.jianshu.com/p/471d9bfbd72f

2. 博客园 刘建平Pinard https://www.cnblogs.com/pinard/p/7278324.html

3. Github Heitao5200 https://github.com/Heitao5200/DGB/blob/master/feature/feature_code/train_word2vec.py

这篇关于达观数据比赛 第三天任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538591

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者