钢铁切割问题 动态规划(输出切割方案和带成本的解法)

2023-12-26 02:48

本文主要是介绍钢铁切割问题 动态规划(输出切割方案和带成本的解法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

假定我们知道sering公司出售一段长度为I英寸的钢条的价格为pi(i=1,2,3….)钢条长度为整英寸如图给出价格表的描述

长度i

1

2

4

5

6

7

8

9

价格p[i]

1

5

9

10

17

17

20

24


这个题不说什么递归算法复杂度有多高的什么的问题了,就直接说一下动态规划,首先我们这样想这个题,就是把长度为i英寸的钢条切割,首先切一刀会切成两部分,或者不切。现在就比较这两种情况哪种的收益高(切或者不切),如果不切收益高,那么结果直接就是不切的收益,如果切成两部分,那么这两部分又可以看成是有两个不同长度的钢条,每一个钢条接着按这个方法讨论。这种方法其实就是动态规划的自底向上法。这种方法一般需要且当定义子问题“规模”的概念,是的任何子问题的求解都只依赖于“更小的”自问题的求解。因而我们可以将子问题按规模排序,按由小到大的顺序进行求解。当求某个子问题时,它所依赖的哪些更小的子问题都已经求解完毕,结果已经保存。每个子问题斗智求解一次,当我们求解它时,它的所有前提子问题都以求解完成。下面先给出这个题的代码,然后再做详细解释:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int  p[10010];
int  r[10010];
int  s[10010];
int n;int bottom_up_cut_rod(int p[],int n)
{for(int i=0;i<=n;i++)    r[i]=0;int q;for(int j=1;j<=n;j++){q=-inf;for(int i=1;i<=j;i++){if(q<p[i]+r[j-i]){q=p[i]+r[j-i];s[j]=i;}}r[j]=q;}return r[n];
}int print_cut(int p[],int n,int s[])
{while(n>0){printf("%d  ",s[n]);n=n-s[n];}cout<<endl;
}int main()
{int num;cout<<"请输入钢条收益"<<endl;cin>>num;for(int i=1;i<=num;i++)    scanf("%d",&p[i]);cout<<"请输入钢条长度:\n"<<endl;while(~scanf("%d",&n)){cout<<"最大收益是:"<<bottom_up_cut_rod(p,n)<<endl;cout<<"切割方案为: ";print_cut(p,n,s);cout<<endl;cout<<"请输入钢条长度:\n"<<endl;}return 0;
}
  主函数的一些输入输出只是一个形式就不详细说了,重点说一下int bottom_up_cut_rod(int p[],int n)这个函数,这个函数有两个参数,一个是价格表p和钢条长度,然后这个函数就是把每一个长度都从i 到n都作出一个最优收益值,就如j从1开始,列出最优收益值放在数组r【】中,然后如果j等于7需要分割的时候会自动读取出前面的最优收益值。然后把最大收益值的切割的第一段钢条长度保存在在另一个数组s[]中,函数print_cut(int p[],int n,int s[])的实现就是总长度减去第一段钢条长度,然后接着判断剩下的长度是否满足条件,最后将切割方案输出.在这举个例子,如果输入的n是7的话,首先从1到7算出了其对应的最优切割方案,然后将切割方案输出的时候,首先会输出s[7],这个时候s[7]=1,首先会把1打印出来,接着n=n-s[7]=6,满足n>0。然后打印出s[6],这个时候s[6]=6(因为6的最优切割方案就是不切割),此时n=0不满足条件了,所以结果输出程序结束。


最后附上算法导论15.1-3加固定成本的问题解:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int  p[10010];
int  r[10010];
int  s[10010];
int n;int bottom_up_cut_rod(int p[],int n,int c)
{for(int i=0;i<=n;i++)    r[i]=0;int q;for(int j=1;j<=n;j++){q=-inf;for(int i=1;i<=j;i++){if(q<(p[i]+r[j-i]-c*(j!=i))){q=(p[i]+r[j-i]-c*(j!=i));s[j]=i;}}r[j]=q;}return r[n];
}int print_cut(int p[],int n,int s[])
{while(n>0){printf("%d  ",s[n]);n=n-s[n];}cout<<endl;
}int main()
{int num,c;cout<<"请输入钢条收益"<<endl;cin>>num;for(int i=1;i<=num;i++)    scanf("%d",&p[i]);cin>>c;cout<<"请输入钢条长度:\n"<<endl;while(~scanf("%d",&n)){cout<<"最大收益是:"<<bottom_up_cut_rod(p,n,c)<<endl;cout<<"切割方案为: ";print_cut(p,n,s);cout<<endl;cout<<"请输入钢条长度:\n"<<endl;}return 0;
}


这篇关于钢铁切割问题 动态规划(输出切割方案和带成本的解法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537862

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k