钢铁切割问题 动态规划(输出切割方案和带成本的解法)

2023-12-26 02:48

本文主要是介绍钢铁切割问题 动态规划(输出切割方案和带成本的解法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

假定我们知道sering公司出售一段长度为I英寸的钢条的价格为pi(i=1,2,3….)钢条长度为整英寸如图给出价格表的描述

长度i

1

2

4

5

6

7

8

9

价格p[i]

1

5

9

10

17

17

20

24


这个题不说什么递归算法复杂度有多高的什么的问题了,就直接说一下动态规划,首先我们这样想这个题,就是把长度为i英寸的钢条切割,首先切一刀会切成两部分,或者不切。现在就比较这两种情况哪种的收益高(切或者不切),如果不切收益高,那么结果直接就是不切的收益,如果切成两部分,那么这两部分又可以看成是有两个不同长度的钢条,每一个钢条接着按这个方法讨论。这种方法其实就是动态规划的自底向上法。这种方法一般需要且当定义子问题“规模”的概念,是的任何子问题的求解都只依赖于“更小的”自问题的求解。因而我们可以将子问题按规模排序,按由小到大的顺序进行求解。当求某个子问题时,它所依赖的哪些更小的子问题都已经求解完毕,结果已经保存。每个子问题斗智求解一次,当我们求解它时,它的所有前提子问题都以求解完成。下面先给出这个题的代码,然后再做详细解释:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int  p[10010];
int  r[10010];
int  s[10010];
int n;int bottom_up_cut_rod(int p[],int n)
{for(int i=0;i<=n;i++)    r[i]=0;int q;for(int j=1;j<=n;j++){q=-inf;for(int i=1;i<=j;i++){if(q<p[i]+r[j-i]){q=p[i]+r[j-i];s[j]=i;}}r[j]=q;}return r[n];
}int print_cut(int p[],int n,int s[])
{while(n>0){printf("%d  ",s[n]);n=n-s[n];}cout<<endl;
}int main()
{int num;cout<<"请输入钢条收益"<<endl;cin>>num;for(int i=1;i<=num;i++)    scanf("%d",&p[i]);cout<<"请输入钢条长度:\n"<<endl;while(~scanf("%d",&n)){cout<<"最大收益是:"<<bottom_up_cut_rod(p,n)<<endl;cout<<"切割方案为: ";print_cut(p,n,s);cout<<endl;cout<<"请输入钢条长度:\n"<<endl;}return 0;
}
  主函数的一些输入输出只是一个形式就不详细说了,重点说一下int bottom_up_cut_rod(int p[],int n)这个函数,这个函数有两个参数,一个是价格表p和钢条长度,然后这个函数就是把每一个长度都从i 到n都作出一个最优收益值,就如j从1开始,列出最优收益值放在数组r【】中,然后如果j等于7需要分割的时候会自动读取出前面的最优收益值。然后把最大收益值的切割的第一段钢条长度保存在在另一个数组s[]中,函数print_cut(int p[],int n,int s[])的实现就是总长度减去第一段钢条长度,然后接着判断剩下的长度是否满足条件,最后将切割方案输出.在这举个例子,如果输入的n是7的话,首先从1到7算出了其对应的最优切割方案,然后将切割方案输出的时候,首先会输出s[7],这个时候s[7]=1,首先会把1打印出来,接着n=n-s[7]=6,满足n>0。然后打印出s[6],这个时候s[6]=6(因为6的最优切割方案就是不切割),此时n=0不满足条件了,所以结果输出程序结束。


最后附上算法导论15.1-3加固定成本的问题解:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int  p[10010];
int  r[10010];
int  s[10010];
int n;int bottom_up_cut_rod(int p[],int n,int c)
{for(int i=0;i<=n;i++)    r[i]=0;int q;for(int j=1;j<=n;j++){q=-inf;for(int i=1;i<=j;i++){if(q<(p[i]+r[j-i]-c*(j!=i))){q=(p[i]+r[j-i]-c*(j!=i));s[j]=i;}}r[j]=q;}return r[n];
}int print_cut(int p[],int n,int s[])
{while(n>0){printf("%d  ",s[n]);n=n-s[n];}cout<<endl;
}int main()
{int num,c;cout<<"请输入钢条收益"<<endl;cin>>num;for(int i=1;i<=num;i++)    scanf("%d",&p[i]);cin>>c;cout<<"请输入钢条长度:\n"<<endl;while(~scanf("%d",&n)){cout<<"最大收益是:"<<bottom_up_cut_rod(p,n,c)<<endl;cout<<"切割方案为: ";print_cut(p,n,s);cout<<endl;cout<<"请输入钢条长度:\n"<<endl;}return 0;
}


这篇关于钢铁切割问题 动态规划(输出切割方案和带成本的解法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537862

相关文章

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在