工具系列:TensorFlow决策森林_(7)检查和调试决策森林模型

2023-12-25 07:20

本文主要是介绍工具系列:TensorFlow决策森林_(7)检查和调试决策森林模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 设置
    • 训练一个简单的随机森林
    • 绘制模型
    • 检查模型结构
    • 手动创建模型
    • 结束树写作

在本文中,您将学习如何直接检查和创建模型的结构。我们假设您已经熟悉了在初级和中级介绍的概念。

在本文中,您将:

  1. 训练一个随机森林模型并以编程方式访问其结构。

  2. 手动创建一个随机森林模型,并将其用作经典模型。

设置

# 安装 TensorFlow Decision Forests 库
!pip install tensorflow_decision_forests# 安装 wurlitzer 库,用于显示训练日志
!pip install wurlitzer
Collecting tensorflow_decision_forestsUsing cached tensorflow_decision_forests-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB)
Requirement already satisfied: wheel in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (0.37.1)
Requirement already satisfied: numpy in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.24.0rc2)
Requirement already satisfied: absl-py in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.3.0)
Requirement already satisfied: six in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.16.0)
Collecting wurlitzerUsing cached wurlitzer-3.0.3-py3-none-any.whl (7.3 kB)
Requirement already satisfied: pandas in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.5.2)
Requirement already satisfied: tensorflow~=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (65.6.3)
Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.4.0)
Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.7.0)
Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (14.0.6)
Requirement already satisfied: flatbuffers>=2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (22.12.6)
Requirement already satisfied: tensorboard<2.12,>=2.11 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (4.4.0)
Requirement already satisfied: keras<2.12,>=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.14.1)
Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.6.3)
Requirement already satisfied: tensorflow-estimator<2.12,>=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: protobuf<3.20,>=3.9.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.19.6)
Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.3.0)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.51.1)
Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (22.0)
Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.28.0)
Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.2.0)
Requirement already satisfied: python-dateutil>=2.8.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow_decision_forests) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow_decision_forests) (2022.6)
Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.2.2)
Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.4.1)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.8.1)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.6.1)
Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.28.1)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.4.6)
Requirement already satisfied: google-auth<3,>=1.6.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.15.0)
Requirement already satisfied: cachetools<6.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (5.2.0)
Requirement already satisfied: rsa<5,>=3.1.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (4.9)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.3.0rc1)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.3.1)
Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (5.1.0)
Requirement already satisfied: charset-normalizer<3,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.4)
Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2022.12.7)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.26.13)
Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.11.0)
Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.5.0rc2)
Requirement already satisfied: oauthlib>=3.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.2.2)
Installing collected packages: wurlitzer, tensorflow_decision_forests
Successfully installed tensorflow_decision_forests-1.1.0 wurlitzer-3.0.3
Requirement already satisfied: wurlitzer in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (3.0.3)
# 导入tensorflow_decision_forests库
import tensorflow_decision_forests as tfdf# 导入os、numpy、pandas、tensorflow、matplotlib.pyplot、math、collections库
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import math
import collections
2022-12-14 12:24:51.050867: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2022-12-14 12:24:51.050964: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory
2022-12-14 12:24:51.050973: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.

隐藏的代码单元格限制了在colab中的输出高度。


# 导入所需的模块
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
from IPython.display import display as ipy_display# 定义一个魔术命令,用于设置单元格的最大高度
@register_line_magic
def set_cell_height(size):# 调用Javascript代码,设置单元格的最大高度ipy_display(Javascript("google.colab.output.setIframeHeight(0, true, {maxHeight: " +str(size) + "})"))

训练一个简单的随机森林

我们像在初学者colab中一样训练一个随机森林。

# 下载数据集
!wget -q https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins.csv -O /tmp/penguins.csv# 将数据集加载到Pandas Dataframe中
dataset_df = pd.read_csv("/tmp/penguins.csv")# 显示前三个示例
print(dataset_df.head(3))# 将Pandas Dataframe转换为tf数据集
dataset_tf = tfdf.keras.pd_dataframe_to_tf_dataset(dataset_df, label="species")# 训练随机森林模型
model = tfdf.keras.RandomForestModel(compute_oob_variable_importances=True)
model.fit(x=dataset_tf)
  species     island  bill_length_mm  bill_depth_mm  flipper_length_mm  \
0  Adelie  Torgersen            39.1           18.7              181.0   
1  Adelie  Torgersen            39.5           17.4              186.0   
2  Adelie  Torgersen            40.3           18.0              195.0   body_mass_g     sex  year  
0       3750.0    male  2007  
1       3800.0  female  2007  
2       3250.0  female  2007  
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.Use /tmpfs/tmp/tmpvr7urazn as temporary training directory
Reading training dataset...
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089Training dataset read in 0:00:02.961832. Found 344 examples.
Training model...
Model trained in 0:00:00.093680
Compiling model...[INFO 2022-12-14T12:24:58.955519768+00:00 kernel.cc:1175] Loading model from path /tmpfs/tmp/tmpvr7urazn/model/ with prefix fb8057db01324481
[INFO 2022-12-14T12:24:58.971817533+00:00 abstract_model.cc:1306] Engine "RandomForestGeneric" built
[INFO 2022-12-14T12:24:58.97187255+00:00 kernel.cc:1021] Use fast generic engineWARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convertWARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convertWARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Model compiled.<keras.callbacks.History at 0x7f9b5394c6d0>

请注意模型构造函数中的compute_oob_variable_importances=True超参数。此选项在训练过程中计算袋外(OOB)变量重要性。这是随机森林模型的一种流行的排列变量重要性。

计算OOB变量重要性不会影响最终模型,但会减慢大型数据集的训练速度。

请检查模型摘要:

# 打印模型的概述信息
model.summary()
<IPython.core.display.Javascript object>Model: "random_forest_model"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================
=================================================================
Total params: 1
Trainable params: 0
Non-trainable params: 1
_________________________________________________________________
Type: "RANDOM_FOREST"
Task: CLASSIFICATION
Label: "__LABEL"Input Features (7):bill_depth_mmbill_length_mmbody_mass_gflipper_length_mmislandsexyearNo weightsVariable Importance: MEAN_DECREASE_IN_ACCURACY:1.    "bill_length_mm"  0.151163 ################2.            "island"  0.008721 #3.     "bill_depth_mm"  0.000000 4.       "body_mass_g"  0.000000 5.               "sex"  0.000000 6.              "year"  0.000000 7. "flipper_length_mm" -0.002907 Variable Importance: MEAN_DECREASE_IN_AP_1_VS_OTHERS:1.    "bill_length_mm"  0.083305 ################2.            "island"  0.007664 #3. "flipper_length_mm"  0.003400 4.     "bill_depth_mm"  0.002741 5.       "body_mass_g"  0.000722 6.               "sex"  0.000644 7.              "year"  0.000000 Variable Importance: MEAN_DECREASE_IN_AP_2_VS_OTHERS:1.    "bill_length_mm"  0.508510 ################2.            "island"  0.023487 3.     "bill_depth_mm"  0.007744 4. "flipper_length_mm"  0.006008 5.       "body_mass_g"  0.003017 6.               "sex"  0.001537 7.              "year" -0.000245 Variable Importance: MEAN_DECREASE_IN_AP_3_VS_OTHERS:1.            "island"  0.002192 ################2.    "bill_length_mm"  0.001572 ############3.     "bill_depth_mm"  0.000497 #######4.               "sex"  0.000000 ####5.              "year"  0.000000 ####6.       "body_mass_g" -0.000053 ####7. "flipper_length_mm" -0.000890 Variable Importance: MEAN_DECREASE_IN_AUC_1_VS_OTHERS:1.    "bill_length_mm"  0.071306 ################2.            "island"  0.007299 #3. "flipper_length_mm"  0.004506 #4.     "bill_depth_mm"  0.002124 5.       "body_mass_g"  0.000548 6.               "sex"  0.000480 7.              "year"  0.000000 Variable Importance: MEAN_DECREASE_IN_AUC_2_VS_OTHERS:1.    "bill_length_mm"  0.108642 ################2.            "island"  0.014493 ##3.     "bill_depth_mm"  0.007406 #4. "flipper_length_mm"  0.005195 5.       "body_mass_g"  0.001012 6.               "sex"  0.000480 7.              "year" -0.000053 Variable Importance: MEAN_DECREASE_IN_AUC_3_VS_OTHERS:1.            "island"  0.002126 ################2.    "bill_length_mm"  0.001393 ###########3.     "bill_depth_mm"  0.000293 #####4.               "sex"  0.000000 ###5.              "year"  0.000000 ###6.       "body_mass_g" -0.000037 ###7. "flipper_length_mm" -0.000550 Variable Importance: MEAN_DECREASE_IN_PRAUC_1_VS_OTHERS:1.    "bill_length_mm"  0.083122 ################2.            "island"  0.010887 ##3. "flipper_length_mm"  0.003425 4.     "bill_depth_mm"  0.002731 5.       "body_mass_g"  0.000719 6.               "sex"  0.000641 7.              "year"  0.000000 Variable Importance: MEAN_DECREASE_IN_PRAUC_2_VS_OTHERS:1.    "bill_length_mm"  0.497611 ################2.            "island"  0.024045 3.     "bill_depth_mm"  0.007734 4. "flipper_length_mm"  0.006017 5.       "body_mass_g"  0.003000 6.               "sex"  0.001528 7.              "year" -0.000243 Variable Importance: MEAN_DECREASE_IN_PRAUC_3_VS_OTHERS:1.            "island"  0.002187 ################2.    "bill_length_mm"  0.001568 ############3.     "bill_depth_mm"  0.000495 #######4.               "sex"  0.000000 ####5.              "year"  0.000000 ####6.       "body_mass_g" -0.000053 ####7. "flipper_length_mm" -0.000886 Variable Importance: MEAN_MIN_DEPTH:1.           "__LABEL"  3.479602 ################2.              "year"  3.463891 ###############3.               "sex"  3.430498 ###############4.       "body_mass_g"  2.898112 ###########5.            "island"  2.388925 ########6.     "bill_depth_mm"  2.336100 #######7.    "bill_length_mm"  1.282960 8. "flipper_length_mm"  1.270079 Variable Importance: NUM_AS_ROOT:1. "flipper_length_mm" 157.000000 ################2.    "bill_length_mm" 76.000000 #######3.     "bill_depth_mm" 52.000000 #####4.            "island" 12.000000 5.       "body_mass_g"  3.000000 Variable Importance: NUM_NODES:1.    "bill_length_mm" 778.000000 ################2.     "bill_depth_mm" 463.000000 #########3. "flipper_length_mm" 414.000000 ########4.            "island" 342.000000 ######5.       "body_mass_g" 338.000000 ######6.               "sex" 36.000000 7.              "year" 19.000000 Variable Importance: SUM_SCORE:1.    "bill_length_mm" 36515.793787 ################2. "flipper_length_mm" 35120.434174 ###############3.            "island" 14669.408395 ######4.     "bill_depth_mm" 14515.446617 ######5.       "body_mass_g" 3485.330881 #6.               "sex" 354.201073 7.              "year" 49.737758 Winner takes all: true
Out-of-bag evaluation: accuracy:0.976744 logloss:0.0678223
Number of trees: 300
Total number of nodes: 5080Number of nodes by tree:
Count: 300 Average: 16.9333 StdDev: 3.10197
Min: 11 Max: 31 Ignored: 0
----------------------------------------------
[ 11, 12)  6   2.00%   2.00% #
[ 12, 13)  0   0.00%   2.00%
[ 13, 14) 46  15.33%  17.33% #####
[ 14, 15)  0   0.00%  17.33%
[ 15, 16) 70  23.33%  40.67% ########
[ 16, 17)  0   0.00%  40.67%
[ 17, 18) 84  28.00%  68.67% ##########
[ 18, 19)  0   0.00%  68.67%
[ 19, 20) 46  15.33%  84.00% #####
[ 20, 21)  0   0.00%  84.00%
[ 21, 22) 30  10.00%  94.00% ####
[ 22, 23)  0   0.00%  94.00%
[ 23, 24) 13   4.33%  98.33% ##
[ 24, 25)  0   0.00%  98.33%
[ 25, 26)  2   0.67%  99.00%
[ 26, 27)  0   0.00%  99.00%
[ 27, 28)  2   0.67%  99.67%
[ 28, 29)  0   0.00%  99.67%
[ 29, 30)  0   0.00%  99.67%
[ 30, 31]  1   0.33% 100.00%Depth by leafs:
Count: 2690 Average: 3.53271 StdDev: 1.06789
Min: 2 Max: 7 Ignored: 0
----------------------------------------------
[ 2, 3) 545  20.26%  20.26% ######
[ 3, 4) 747  27.77%  48.03% ########
[ 4, 5) 888  33.01%  81.04% ##########
[ 5, 6) 444  16.51%  97.55% #####
[ 6, 7)  62   2.30%  99.85% #
[ 7, 7]   4   0.15% 100.00%Number of training obs by leaf:
Count: 2690 Average: 38.3643 StdDev: 44.8651
Min: 5 Max: 155 Ignored: 0
----------------------------------------------
[   5,  12) 1474  54.80%  54.80% ##########
[  12,  20)  124   4.61%  59.41% #
[  20,  27)   48   1.78%  61.19%
[  27,  35)   74   2.75%  63.94% #
[  35,  42)   58   2.16%  66.10%
[  42,  50)   85   3.16%  69.26% #
[  50,  57)   96   3.57%  72.83% #
[  57,  65)   87   3.23%  76.06% #
[  65,  72)   49   1.82%  77.88%
[  72,  80)   23   0.86%  78.74%
[  80,  88)   30   1.12%  79.85%
[  88,  95)   23   0.86%  80.71%
[  95, 103)   42   1.56%  82.27%
[ 103, 110)   62   2.30%  84.57%
[ 110, 118)  115   4.28%  88.85% #
[ 118, 125)  115   4.28%  93.12% #
[ 125, 133)   98   3.64%  96.77% #
[ 133, 140)   49   1.82%  98.59%
[ 140, 148)   31   1.15%  99.74%
[ 148, 155]    7   0.26% 100.00%Attribute in nodes:778 : bill_length_mm [NUMERICAL]463 : bill_depth_mm [NUMERICAL]414 : flipper_length_mm [NUMERICAL]342 : island [CATEGORICAL]338 : body_mass_g [NUMERICAL]36 : sex [CATEGORICAL]19 : year [NUMERICAL]Attribute in nodes with depth <= 0:157 : flipper_length_mm [NUMERICAL]76 : bill_length_mm [NUMERICAL]52 : bill_depth_mm [NUMERICAL]12 : island [CATEGORICAL]3 : body_mass_g [NUMERICAL]Attribute in nodes with depth <= 1:250 : bill_length_mm [NUMERICAL]244 : flipper_length_mm [NUMERICAL]183 : bill_depth_mm [NUMERICAL]170 : island [CATEGORICAL]53 : body_mass_g [NUMERICAL]Attribute in nodes with depth <= 2:462 : bill_length_mm [NUMERICAL]320 : flipper_length_mm [NUMERICAL]310 : bill_depth_mm [NUMERICAL]287 : island [CATEGORICAL]162 : body_mass_g [NUMERICAL]9 : sex [CATEGORICAL]5 : year [NUMERICAL]Attribute in nodes with depth <= 3:669 : bill_length_mm [NUMERICAL]410 : bill_depth_mm [NUMERICAL]383 : flipper_length_mm [NUMERICAL]328 : island [CATEGORICAL]286 : body_mass_g [NUMERICAL]32 : sex [CATEGORICAL]10 : year [NUMERICAL]Attribute in nodes with depth <= 5:778 : bill_length_mm [NUMERICAL]462 : bill_depth_mm [NUMERICAL]413 : flipper_length_mm [NUMERICAL]342 : island [CATEGORICAL]338 : body_mass_g [NUMERICAL]36 : sex [CATEGORICAL]19 : year [NUMERICAL]Condition type in nodes:2012 : HigherCondition378 : ContainsBitmapCondition
Condition type in nodes with depth <= 0:288 : HigherCondition12 : ContainsBitmapCondition
Condition type in nodes with depth <= 1:730 : HigherCondition170 : ContainsBitmapCondition
Condition type in nodes with depth <= 2:1259 : HigherCondition296 : ContainsBitmapCondition
Condition type in nodes with depth <= 3:1758 : HigherCondition360 : ContainsBitmapCondition
Condition type in nodes with depth <= 5:2010 : HigherCondition378 : ContainsBitmapCondition
Node format: NOT_SETTraining OOB:trees: 1, Out-of-bag evaluation: accuracy:0.964286 logloss:1.28727trees: 13, Out-of-bag evaluation: accuracy:0.959064 logloss:0.4869trees: 31, Out-of-bag evaluation: accuracy:0.95614 logloss:0.284603trees: 54, Out-of-bag evaluation: accuracy:0.973837 logloss:0.175283trees: 73, Out-of-bag evaluation: accuracy:0.97093 logloss:0.175816trees: 85, Out-of-bag evaluation: accuracy:0.973837 logloss:0.171781trees: 96, Out-of-bag evaluation: accuracy:0.97093 logloss:0.077417trees: 116, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0761788trees: 127, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0745239trees: 137, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0753508trees: 150, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0741464trees: 160, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0749481trees: 170, Out-of-bag evaluation: accuracy:0.979651 logloss:0.0719624trees: 190, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0711787trees: 203, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0701121trees: 213, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0682979trees: 224, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0689686trees: 248, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0674086trees: 260, Out-of-bag evaluation: accuracy:0.976744 logloss:0.068218trees: 270, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0680733trees: 280, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0685965trees: 290, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0683421trees: 300, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0678223

注意,变量重要性有多个名称为MEAN_DECREASE_IN_*

绘制模型

接下来,绘制模型。

随机森林是一个庞大的模型(该模型有300棵树和约5k个节点;请参见上面的摘要)。因此,只绘制第一棵树,并将节点限制在深度3。

# 使用model_plotter模块中的plot_model_in_colab函数来绘制模型
# 参数model表示要绘制的模型
# 参数tree_idx表示要绘制的树的索引,这里设置为0表示绘制第一棵树
# 参数max_depth表示要绘制的树的最大深度,这里设置为3表示绘制到第三层
tfdf.model_plotter.plot_model_in_colab(model, tree_idx=0, max_depth=3)

/**

  • Plotting of decision trees generated by TF-DF.
  • A tree is a recursive structure of node objects.
  • A node contains one or more of the following components:
    • A value: Representing the output of the node. If the node is not a leaf,
  •  the value is only present for analysis i.e. it is not used for
    
  •  predictions.
    
    • A condition : For non-leaf nodes, the condition (also known as split)
  •  defines a binary test to branch to the positive or negative child.
    
    • An explanation: Generally a plot showing the relation between the label
  •  and the condition to give insights about the effect of the condition.
    
    • Two children : For non-leaf nodes, the children nodes. The first
  •  children (i.e. "node.children[0]") is the negative children (drawn in
    
  •  red). The second children is the positive one (drawn in green).
    

*/

/**

  • Plots a single decision tree into a DOM element.
  • @param {!options} options Dictionary of configurations.
  • @param {!tree} raw_tree Recursive tree structure.
  • @param {string} canvas_id Id of the output dom element.
    */
    function display_tree(options, raw_tree, canvas_id) {
    console.log(options);

// Determine the node placement.
const tree_struct = d3.tree().nodeSize(
[options.node_y_offset, options.node_x_offset])(d3.hierarchy(raw_tree));

// Boundaries of the node placement.
let x_min = Infinity;
let x_max = -x_min;
let y_min = Infinity;
let y_max = -x_min;

tree_struct.each(d => {
if (d.x > x_max) x_max = d.x;
if (d.x < x_min) x_min = d.x;
if (d.y > y_max) y_max = d.y;
if (d.y < y_min) y_min = d.y;
});

// Size of the plot.
const width = y_max - y_min + options.node_x_size + options.margin * 2;
const height = x_max - x_min + options.node_y_size + options.margin * 2 +
options.node_y_offset - options.node_y_size;

const plot = d3.select(canvas_id);

// Tool tip
options.tooltip = plot.append(‘div’)
.attr(‘width’, 100)
.attr(‘height’, 100)
.style(‘padding’, ‘4px’)
.style(‘background’, ‘#fff’)
.style(‘box-shadow’, ‘4px 4px 0px rgba(0,0,0,0.1)’)
.style(‘border’, ‘1px solid black’)
.style(‘font-family’, ‘sans-serif’)
.style(‘font-size’, options.font_size)
.style(‘position’, ‘absolute’)
.style(‘z-index’, ‘10’)
.attr(‘pointer-events’, ‘none’)
.style(‘display’, ‘none’);

// Create canvas
const svg = plot.append(‘svg’).attr(‘width’, width).attr(‘height’, height);
const graph =
svg.style(‘overflow’, ‘visible’)
.append(‘g’)
.attr(‘font-family’, ‘sans-serif’)
.attr(‘font-size’, options.font_size)
.attr(
‘transform’,
() => translate(${options.margin},${ - x_min + options.node_y_offset / 2 + options.margin}));

// Plot bounding box.
if (options.show_plot_bounding_box) {
svg.append(‘rect’)
.attr(‘width’, width)
.attr(‘height’, height)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘black’);
}

// Draw the edges.
display_edges(options, graph, tree_struct);

// Draw the nodes.
display_nodes(options, graph, tree_struct);
}

/**

  • Draw the nodes of the tree.
  • @param {!options} options Dictionary of configurations.
  • @param {!graph} graph D3 search handle containing the graph.
  • @param {!tree_struct} tree_struct Structure of the tree (node placement,
  • data, etc.).
    

*/
function display_nodes(options, graph, tree_struct) {
const nodes = graph.append(‘g’)
.selectAll(‘g’)
.data(tree_struct.descendants())
.join(‘g’)
.attr(‘transform’, d => translate(${d.y},${d.x}));

nodes.append(‘rect’)
.attr(‘x’, 0.5)
.attr(‘y’, 0.5)
.attr(‘width’, options.node_x_size)
.attr(‘height’, options.node_y_size)
.attr(‘stroke’, ‘lightgrey’)
.attr(‘stroke-width’, 1)
.attr(‘fill’, ‘white’)
.attr(‘y’, -options.node_y_size / 2);

// Brackets on the right of condition nodes without children.
non_leaf_node_without_children =
nodes.filter(node => node.data.condition != null && node.children == null)
.append(‘g’)
.attr(‘transform’, translate(${options.node_x_size},0));

non_leaf_node_without_children.append(‘path’)
.attr(‘d’, ‘M0,0 C 10,0 0,10 10,10’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘#F00’);

non_leaf_node_without_children.append(‘path’)
.attr(‘d’, ‘M0,0 C 10,0 0,-10 10,-10’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘#0F0’);

const node_content = nodes.append(‘g’).attr(
‘transform’,
translate(0,${options.node_padding - options.node_y_size / 2}));

node_content.append(node => create_node_element(options, node));
}

/**

  • Creates the D3 content for a single node.
  • @param {!options} options Dictionary of configurations.
  • @param {!node} node Node to draw.
  • @return {!d3} D3 content.
    */
    function create_node_element(options, node) {
    // Output accumulator.
    let output = {
    // Content to draw.
    content: d3.create(‘svg:g’),
    // Vertical offset to the next element to draw.
    vertical_offset: 0
    };

// Conditions.
if (node.data.condition != null) {
display_condition(options, node.data.condition, output);
}

// Values.
if (node.data.value != null) {
display_value(options, node.data.value, output);
}

// Explanations.
if (node.data.explanation != null) {
display_explanation(options, node.data.explanation, output);
}

return output.content.node();
}

/**

  • Adds a single line of text inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {string} text Text to display.
  • @param {!output} output Output display accumulator.
    */
    function display_node_text(options, text, output) {
    output.content.append(‘text’)
    .attr(‘x’, options.node_padding)
    .attr(‘y’, output.vertical_offset)
    .attr(‘alignment-baseline’, ‘hanging’)
    .text(text);
    output.vertical_offset += 10;
    }

/**

  • Adds a single line of text inside of a node with a tooltip.
  • @param {!options} options Dictionary of configurations.
  • @param {string} text Text to display.
  • @param {string} tooltip Text in the Tooltip.
  • @param {!output} output Output display accumulator.
    */
    function display_node_text_with_tooltip(options, text, tooltip, output) {
    const item = output.content.append(‘text’)
    .attr(‘x’, options.node_padding)
    .attr(‘alignment-baseline’, ‘hanging’)
    .text(text);

add_tooltip(options, item, () => tooltip);
output.vertical_offset += 10;
}

/**

  • Adds a tooltip to a dom element.
  • @param {!options} options Dictionary of configurations.
  • @param {!dom} target Dom element to equip with a tooltip.
  • @param {!func} get_content Generates the html content of the tooltip.
    */
    function add_tooltip(options, target, get_content) {
    function show(d) {
    options.tooltip.style(‘display’, ‘block’);
    options.tooltip.html(get_content());
    }

function hide(d) {
options.tooltip.style(‘display’, ‘none’);
}

function move(d) {
options.tooltip.style(‘display’, ‘block’);
options.tooltip.style(‘left’, (d.pageX + 5) + ‘px’);
options.tooltip.style(‘top’, d.pageY + ‘px’);
}

target.on(‘mouseover’, show);
target.on(‘mouseout’, hide);
target.on(‘mousemove’, move);
}

/**

  • Adds a condition inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {!condition} condition Condition to display.
  • @param {!output} output Output display accumulator.
    */
    function display_condition(options, condition, output) {
    threshold_format = d3.format(‘r’);

if (condition.type === ‘IS_MISSING’) {
display_node_text(options, ${condition.attribute} is missing, output);
return;
}

if (condition.type === ‘IS_TRUE’) {
display_node_text(options, ${condition.attribute} is true, output);
return;
}

if (condition.type === ‘NUMERICAL_IS_HIGHER_THAN’) {
format = d3.format(‘r’);
display_node_text(
options,
${condition.attribute} >= ${threshold_format(condition.threshold)},
output);
return;
}

if (condition.type === ‘CATEGORICAL_IS_IN’) {
display_node_text_with_tooltip(
options, ${condition.attribute} in [...],
${condition.attribute} in [${condition.mask}], output);
return;
}

if (condition.type === ‘CATEGORICAL_SET_CONTAINS’) {
display_node_text_with_tooltip(
options, ${condition.attribute} intersect [...],
${condition.attribute} intersect [${condition.mask}], output);
return;
}

if (condition.type === ‘NUMERICAL_SPARSE_OBLIQUE’) {
display_node_text_with_tooltip(
options, Sparse oblique split...,
[${condition.attributes}]*[${condition.weights}]>=${ threshold_format(condition.threshold)},
output);
return;
}

display_node_text(
options, Non supported condition ${condition.type}, output);
}

/**

  • Adds a value inside of a node.

  • @param {!options} options Dictionary of configurations.

  • @param {!value} value Value to display.

  • @param {!output} output Output display accumulator.
    */
    function display_value(options, value, output) {
    if (value.type === ‘PROBABILITY’) {
    const left_margin = 0;
    const right_margin = 50;
    const plot_width = options.node_x_size - options.node_padding * 2 -
    left_margin - right_margin;

    let cusum = Array.from(d3.cumsum(value.distribution));
    cusum.unshift(0);
    const distribution_plot = output.content.append(‘g’).attr(
    ‘transform’, translate(0,${output.vertical_offset + 0.5}));

    distribution_plot.selectAll(‘rect’)
    .data(value.distribution)
    .join(‘rect’)
    .attr(‘height’, 10)
    .attr(
    ‘x’,
    (d, i) =>
    (cusum[i] * plot_width + left_margin + options.node_padding))
    .attr(‘width’, (d, i) => d * plot_width)
    .style(‘fill’, (d, i) => d3.schemeSet1[i]);

    const num_examples =
    output.content.append(‘g’)
    .attr(‘transform’, translate(0,${output.vertical_offset}))
    .append(‘text’)
    .attr(‘x’, options.node_x_size - options.node_padding)
    .attr(‘alignment-baseline’, ‘hanging’)
    .attr(‘text-anchor’, ‘end’)
    .text((${value.num_examples}));

    const distribution_details = d3.create(‘ul’);
    distribution_details.selectAll(‘li’)
    .data(value.distribution)
    .join(‘li’)
    .append(‘span’)
    .text(
    (d, i) =>
    ‘class ’ + i + ‘: ’ + d3.format(’.3%’)(value.distribution[i]));

    add_tooltip(options, distribution_plot, () => distribution_details.html());
    add_tooltip(options, num_examples, () => ‘Number of examples’);

    output.vertical_offset += 10;
    return;
    }

if (value.type === ‘REGRESSION’) {
display_node_text(
options,
‘value: ’ + d3.format(‘r’)(value.value) + ( +
d3.format(’.6’)(value.num_examples) + ),
output);
return;
}

display_node_text(options, Non supported value ${value.type}, output);
}

/**

  • Adds an explanation inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {!explanation} explanation Explanation to display.
  • @param {!output} output Output display accumulator.
    */
    function display_explanation(options, explanation, output) {
    // Margin before the explanation.
    output.vertical_offset += 10;

display_node_text(
options, Non supported explanation ${explanation.type}, output);
}

/**

  • Draw the edges of the tree.
  • @param {!options} options Dictionary of configurations.
  • @param {!graph} graph D3 search handle containing the graph.
  • @param {!tree_struct} tree_struct Structure of the tree (node placement,
  • data, etc.).
    

*/
function display_edges(options, graph, tree_struct) {
// Draw an edge between a parent and a child node with a bezier.
function draw_single_edge(d) {
return ‘M’ + (d.source.y + options.node_x_size) + ‘,’ + d.source.x + ’ C’ +
(d.source.y + options.node_x_size + options.edge_rounding) + ‘,’ +
d.source.x + ’ ’ + (d.target.y - options.edge_rounding) + ‘,’ +
d.target.x + ’ ’ + d.target.y + ‘,’ + d.target.x;
}

graph.append(‘g’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.2)
.selectAll(‘path’)
.data(tree_struct.links())
.join(‘path’)
.attr(‘d’, draw_single_edge)
.attr(
‘stroke’, d => (d.target === d.source.children[0]) ? ‘#0F0’ : ‘#F00’);
}

display_tree({“margin”: 10, “node_x_size”: 160, “node_y_size”: 28, “node_x_offset”: 180, “node_y_offset”: 33, “font_size”: 10, “edge_rounding”: 20, “node_padding”: 2, “show_plot_bounding_box”: false}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.47093023255813954, 0.19476744186046513, 0.33430232558139533], “num_examples”: 344.0}, “condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “bill_length_mm”, “threshold”: 43.25}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [0.005847953216374269, 0.3567251461988304, 0.6374269005847953], “num_examples”: 171.0}, “condition”: {“type”: “CATEGORICAL_IS_IN”, “attribute”: “island”, “mask”: [“Biscoe”]}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [0.00909090909090909, 0.0, 0.990909090909091], “num_examples”: 110.0}, “condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “bill_depth_mm”, “threshold”: 17.225584030151367}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [0.16666666666666666, 0.0, 0.8333333333333334], “num_examples”: 6.0}}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.0, 0.0, 1.0], “num_examples”: 104.0}}]}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.0, 1.0, 0.0], “num_examples”: 61.0}}]}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.930635838150289, 0.03468208092485549, 0.03468208092485549], “num_examples”: 173.0}, “condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “bill_depth_mm”, “threshold”: 15.100000381469727}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [0.9640718562874252, 0.03592814371257485, 0.0], “num_examples”: 167.0}, “condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “flipper_length_mm”, “threshold”: 187.5}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [1.0, 0.0, 0.0], “num_examples”: 104.0}}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.9047619047619048, 0.09523809523809523, 0.0], “num_examples”: 63.0}, “condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “bill_length_mm”, “threshold”: 42.30000305175781}}]}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.0, 0.0, 1.0], “num_examples”: 6.0}}]}]}, “#tree_plot_05707b35c4f748738efd3da21ab9197f”)

检查模型结构

模型结构和元数据可以通过make_inspector()创建的inspector来获取。

**注意:**根据学习算法和超参数的不同,inspector将暴露不同的专门属性。例如,winner_take_all字段是随机森林模型特有的。

# 创建一个模型检查器对象,用于检查模型的性能和质量
inspector = model.make_inspector()

对于我们的模型,可用的检查员字段有:

# 使用列表推导式,遍历inspector模块中的所有属性
# 过滤掉以"_"开头的属性
fields = [field for field in dir(inspector) if not field.startswith("_")]
['MODEL_NAME','dataspec','evaluation','export_to_tensorboard','extract_all_trees','extract_tree','features','header','iterate_on_nodes','label','label_classes','metadata','model_type','num_trees','objective','specialized_header','task','training_logs','tuning_logs','variable_importances','winner_take_all_inference']

记得查看API参考或使用?查看内置文档。

?inspector.model_type

一些模型元数据:

# 打印模型类型
print("Model type:", inspector.model_type())# 打印模型中树的数量
print("Number of trees:", inspector.num_trees())# 打印模型的目标函数
print("Objective:", inspector.objective())# 打印模型的输入特征
print("Input features:", inspector.features())
Model type: RANDOM_FOREST
Number of trees: 300
Objective: Classification(label=__LABEL, class=None, num_classes=3)
Input features: ["bill_depth_mm" (1; #0), "bill_length_mm" (1; #1), "body_mass_g" (1; #2), "flipper_length_mm" (1; #3), "island" (4; #4), "sex" (4; #5), "year" (1; #6)]

evaluate()是在训练期间计算的模型评估。用于此评估的数据集取决于算法。例如,它可以是验证数据集或袋外数据集。

**注意:**虽然在训练期间计算,但evaluate()从未对训练数据集进行评估。

# 创建一个名为inspector的对象
inspector = Inspector()
# 调用inspector对象的evaluation()方法
inspector.evaluation()
Evaluation(num_examples=344, accuracy=0.9767441860465116, loss=0.06782230959804512, rmse=None, ndcg=None, aucs=None, auuc=None, qini=None)

变量重要性如下:

The variable importances are:

# 打印可用的变量重要性
print(f"Available variable importances:")# 遍历变量重要性字典的键,并打印出来
for importance in inspector.variable_importances().keys():print("\t", importance)
Available variable importances:MEAN_DECREASE_IN_AP_1_VS_OTHERSMEAN_DECREASE_IN_PRAUC_3_VS_OTHERSSUM_SCOREMEAN_DECREASE_IN_PRAUC_1_VS_OTHERSMEAN_DECREASE_IN_ACCURACYMEAN_DECREASE_IN_AUC_1_VS_OTHERSMEAN_DECREASE_IN_AP_3_VS_OTHERSNUM_AS_ROOTMEAN_DECREASE_IN_AP_2_VS_OTHERSMEAN_DECREASE_IN_AUC_2_VS_OTHERSMEAN_MIN_DEPTHMEAN_DECREASE_IN_AUC_3_VS_OTHERSNUM_NODESMEAN_DECREASE_IN_PRAUC_2_VS_OTHERS

不同的变量重要性具有不同的语义。例如,具有平均减少auc0.05的特征意味着从训练数据集中移除该特征会使AUC降低/受损5%。

# 获取类别1与其他类别之间的AUC的平均减少量
mean_decrease_in_auc_1_vs_others = inspector.variable_importances()["MEAN_DECREASE_IN_AUC_1_VS_OTHERS"]
[("bill_length_mm" (1; #1), 0.0713061951754389),("island" (4; #4), 0.007298519736842035),("flipper_length_mm" (1; #3), 0.004505893640351366),("bill_depth_mm" (1; #0), 0.0021244517543865804),("body_mass_g" (1; #2), 0.0005482456140351033),("sex" (4; #5), 0.00047971491228060437),("year" (1; #6), 0.0)]

绘制使用Matplotlib的检查器中的变量重要性

import matplotlib.pyplot as pltplt.figure(figsize=(12, 4))  # 创建一个大小为12x4的图形# 平均AUC下降值(class 1相对于其他类别)
variable_importance_metric = "MEAN_DECREASE_IN_AUC_1_VS_OTHERS"
variable_importances = inspector.variable_importances()[variable_importance_metric]# 提取特征名称和重要性值
#
# `variable_importances` 是一个包含<特征, 重要性>元组的列表
feature_names = [vi[0].name for vi in variable_importances]  # 提取特征名称
feature_importances = [vi[1] for vi in variable_importances]  # 提取重要性值
# 特征按重要性值降序排列
feature_ranks = range(len(feature_names))bar = plt.barh(feature_ranks, feature_importances, label=[str(x) for x in feature_ranks])  # 创建水平条形图
plt.yticks(feature_ranks, feature_names)  # 设置y轴刻度为特征名称
plt.gca().invert_yaxis()  # 反转y轴刻度顺序,使重要性高的特征在上方# TODO: 当可用时,替换为 "plt.bar_label()"
# 使用值标记每个条形图
for importance, patch in zip(feature_importances, bar.patches):plt.text(patch.get_x() + patch.get_width(), patch.get_y(), f"{importance:.4f}", va="top")plt.xlabel(variable_importance_metric)  # 设置x轴标签为重要性度量
plt.title("Mean decrease in AUC of the class 1 vs the others")  # 设置图形标题
plt.tight_layout()  # 调整图形布局,以防止标签重叠
plt.show()  # 显示图形

最后,访问实际的树结构:

# 从inspector对象中提取树的信息
# 参数tree_idx表示要提取的树的索引,这里为0表示提取第一棵树的信息
inspector.extract_tree(tree_idx=0)
Tree(root=NonLeafNode(condition=(bill_length_mm >= 43.25; miss=True, score=0.5482327342033386), pos_child=NonLeafNode(condition=(island in ['Biscoe']; miss=True, score=0.6515106558799744), pos_child=NonLeafNode(condition=(bill_depth_mm >= 17.225584030151367; miss=False, score=0.027205035090446472), pos_child=LeafNode(value=ProbabilityValue([0.16666666666666666, 0.0, 0.8333333333333334],n=6.0), idx=7), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=104.0), idx=6), value=ProbabilityValue([0.00909090909090909, 0.0, 0.990909090909091],n=110.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=61.0), idx=5), value=ProbabilityValue([0.005847953216374269, 0.3567251461988304, 0.6374269005847953],n=171.0)), neg_child=NonLeafNode(condition=(bill_depth_mm >= 15.100000381469727; miss=True, score=0.150658518075943), pos_child=NonLeafNode(condition=(flipper_length_mm >= 187.5; miss=True, score=0.036139510571956635), pos_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=104.0), idx=4), neg_child=NonLeafNode(condition=(bill_length_mm >= 42.30000305175781; miss=True, score=0.23430533707141876), pos_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=5.0), idx=3), neg_child=NonLeafNode(condition=(bill_length_mm >= 40.55000305175781; miss=True, score=0.043961383402347565), pos_child=LeafNode(value=ProbabilityValue([0.8, 0.2, 0.0],n=5.0), idx=2), neg_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=53.0), idx=1), value=ProbabilityValue([0.9827586206896551, 0.017241379310344827, 0.0],n=58.0)), value=ProbabilityValue([0.9047619047619048, 0.09523809523809523, 0.0],n=63.0)), value=ProbabilityValue([0.9640718562874252, 0.03592814371257485, 0.0],n=167.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=6.0), idx=0), value=ProbabilityValue([0.930635838150289, 0.03468208092485549, 0.03468208092485549],n=173.0)), value=ProbabilityValue([0.47093023255813954, 0.19476744186046513, 0.33430232558139533],n=344.0)), label_classes=None)

提取树并不高效。如果速度很重要,可以使用iterate_on_nodes()方法来进行模型检查。这个方法是对模型的所有节点进行深度优先的前序遍历迭代器。

注意:extract_tree()是使用iterate_on_nodes()实现的。

以下示例计算每个特征被使用的次数(这是一种结构变量重要性的指标):

# 创建一个默认字典number_of_use,用于记录每个特征在其条件中被使用的次数
number_of_use = collections.defaultdict(lambda: 0)# 对所有节点进行深度优先的前序遍历
for node_iter in inspector.iterate_on_nodes():# 如果节点不是叶节点,则跳过if not isinstance(node_iter.node, tfdf.py_tree.node.NonLeafNode):continue# 遍历节点条件中使用的所有特征# 默认情况下,模型是"oblique"的,即每个节点测试一个特征for feature in node_iter.node.condition.features():# 特征在使用次数上加1number_of_use[feature] += 1# 打印每个特征的条件节点数
print("Number of condition nodes per features:")
for feature, count in number_of_use.items():print("\t", feature.name, ":", count)
Number of condition nodes per features:bill_length_mm : 778bill_depth_mm : 463flipper_length_mm : 414island : 342body_mass_g : 338year : 19sex : 36

手动创建模型

在本节中,您将手动创建一个小的随机森林模型。为了使其更加简单,该模型只包含一个简单的树:

3个标签类别:红色、蓝色和绿色。
2个特征:f1(数值型)和f2(字符串分类型)f1>=1.5├─(正)─ f2在["猫","狗"]中│         ├─(正)─ 值:[0.8, 0.1, 0.1]│         └─(负)─ 值:[0.1, 0.8, 0.1]└─(负)─ 值:[0.1, 0.1, 0.8]
# 创建模型构建器
builder = tfdf.builder.RandomForestBuilder(path="/tmp/manual_model",  # 指定模型保存的路径objective=tfdf.py_tree.objective.ClassificationObjective(label="color",  # 指定目标变量为"color"classes=["red", "blue", "green"]))  # 指定目标变量的类别为["red", "blue", "green"]

每棵树都逐个添加。

注意: 树对象(tfdf.py_tree.tree.Tree)与前一节中extract_tree()返回的树对象相同。

# 导入所需的模块和类
Tree = tfdf.py_tree.tree.Tree  # 树结构
SimpleColumnSpec = tfdf.py_tree.dataspec.SimpleColumnSpec  # 列规范
ColumnType = tfdf.py_tree.dataspec.ColumnType  # 列类型
NonLeafNode = tfdf.py_tree.node.NonLeafNode  # 非叶节点
LeafNode = tfdf.py_tree.node.LeafNode  # 叶节点
NumericalHigherThanCondition = tfdf.py_tree.condition.NumericalHigherThanCondition  # 数值大于条件
CategoricalIsInCondition = tfdf.py_tree.condition.CategoricalIsInCondition  # 类别在条件
ProbabilityValue = tfdf.py_tree.value.ProbabilityValue  # 概率值# 创建树结构并添加到builder中
builder.add_tree(Tree(NonLeafNode(condition=NumericalHigherThanCondition(feature=SimpleColumnSpec(name="f1", type=ColumnType.NUMERICAL),  # 数值特征"f1"threshold=1.5,  # 阈值为1.5missing_evaluation=False),  # 不考虑缺失值pos_child=NonLeafNode(condition=CategoricalIsInCondition(feature=SimpleColumnSpec(name="f2",type=ColumnType.CATEGORICAL),  # 类别特征"f2"mask=["cat", "dog"],  # 类别为"cat"或"dog"missing_evaluation=False),  # 不考虑缺失值pos_child=LeafNode(value=ProbabilityValue(probability=[0.8, 0.1, 0.1], num_examples=10)),  # 正向子节点为叶节点,概率值为[0.8, 0.1, 0.1],样本数为10neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.8, 0.1], num_examples=20))),  # 负向子节点为叶节点,概率值为[0.1, 0.8, 0.1],样本数为20neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.1, 0.8], num_examples=30)))))  # 负向子节点为叶节点,概率值为[0.1, 0.1, 0.8],样本数为30

结束树写作

# 关闭builder对象
builder.close()
[INFO 2022-12-14T12:25:00.790486355+00:00 kernel.cc:1175] Loading model from path /tmp/manual_model/tmp/ with prefix e09a067144bc479b
[INFO 2022-12-14T12:25:00.790802259+00:00 decision_forest.cc:640] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s).
[INFO 2022-12-14T12:25:00.790878962+00:00 kernel.cc:1021] Use fast generic engine
WARNING:absl:Found untraced functions such as call_get_leaves, _update_step_xla while saving (showing 2 of 2). These functions will not be directly callable after loading.INFO:tensorflow:Assets written to: /tmp/manual_model/assetsINFO:tensorflow:Assets written to: /tmp/manual_model/assets

现在您可以将该模型作为常规的keras模型打开,并进行预测:

# 加载预训练模型
manual_model = tf.keras.models.load_model("/tmp/manual_model")
[INFO 2022-12-14T12:25:01.436506097+00:00 kernel.cc:1175] Loading model from path /tmp/manual_model/assets/ with prefix e09a067144bc479b
[INFO 2022-12-14T12:25:01.436871761+00:00 decision_forest.cc:640] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s).
[INFO 2022-12-14T12:25:01.436909696+00:00 kernel.cc:1021] Use fast generic engine
# 创建一个tf.data.Dataset对象,从给定的张量中切片得到数据集
# 数据集包含两个特征"f1"和"f2",分别是浮点数和字符串类型
# 数据集中的每个样本是一个字典,包含"f1"和"f2"两个键
# 样本数据为:
#   "f1": [1.0, 2.0, 3.0]
#   "f2": ["cat", "cat", "bird"]
# 使用batch(2)方法将数据集划分为大小为2的批次
examples = tf.data.Dataset.from_tensor_slices({"f1": [1.0, 2.0, 3.0],"f2": ["cat", "cat", "bird"]
}).batch(2)# 使用manual_model对examples进行预测
predictions = manual_model.predict(examples)# 打印预测结果
print("predictions:\n", predictions)
1/2 [==============>...............] - ETA: 0s
2/2 [==============================] - 0s 2ms/step
predictions:[[0.1 0.1 0.8][0.8 0.1 0.1][0.1 0.8 0.1]]

访问结构:

注意: 由于模型是序列化和反序列化的,您需要使用一种替代但等效的形式。

# 代码注释# 获取yggdrasil模型路径
yggdrasil_model_path = manual_model.yggdrasil_model_path_tensor().numpy().decode("utf-8")
print("yggdrasil_model_path:",yggdrasil_model_path)# 创建一个模型检查器,用于检查模型的输入特征
inspector = tfdf.inspector.make_inspector(yggdrasil_model_path)
print("Input features:", inspector.features())
yggdrasil_model_path: /tmp/manual_model/assets/
Input features: ["f1" (1; #1), "f2" (4; #2)]

当然,您可以手动绘制这个构建的模型:

# 导入tfdf库中的plot_model_in_colab函数
import tensorflow_decision_forests as tfdf# 使用plot_model_in_colab函数绘制manual_model模型的结构图
tfdf.model_plotter.plot_model_in_colab(manual_model)

/**

  • Plotting of decision trees generated by TF-DF.
  • A tree is a recursive structure of node objects.
  • A node contains one or more of the following components:
    • A value: Representing the output of the node. If the node is not a leaf,
  •  the value is only present for analysis i.e. it is not used for
    
  •  predictions.
    
    • A condition : For non-leaf nodes, the condition (also known as split)
  •  defines a binary test to branch to the positive or negative child.
    
    • An explanation: Generally a plot showing the relation between the label
  •  and the condition to give insights about the effect of the condition.
    
    • Two children : For non-leaf nodes, the children nodes. The first
  •  children (i.e. "node.children[0]") is the negative children (drawn in
    
  •  red). The second children is the positive one (drawn in green).
    

*/

/**

  • Plots a single decision tree into a DOM element.
  • @param {!options} options Dictionary of configurations.
  • @param {!tree} raw_tree Recursive tree structure.
  • @param {string} canvas_id Id of the output dom element.
    */
    function display_tree(options, raw_tree, canvas_id) {
    console.log(options);

// Determine the node placement.
const tree_struct = d3.tree().nodeSize(
[options.node_y_offset, options.node_x_offset])(d3.hierarchy(raw_tree));

// Boundaries of the node placement.
let x_min = Infinity;
let x_max = -x_min;
let y_min = Infinity;
let y_max = -x_min;

tree_struct.each(d => {
if (d.x > x_max) x_max = d.x;
if (d.x < x_min) x_min = d.x;
if (d.y > y_max) y_max = d.y;
if (d.y < y_min) y_min = d.y;
});

// Size of the plot.
const width = y_max - y_min + options.node_x_size + options.margin * 2;
const height = x_max - x_min + options.node_y_size + options.margin * 2 +
options.node_y_offset - options.node_y_size;

const plot = d3.select(canvas_id);

// Tool tip
options.tooltip = plot.append(‘div’)
.attr(‘width’, 100)
.attr(‘height’, 100)
.style(‘padding’, ‘4px’)
.style(‘background’, ‘#fff’)
.style(‘box-shadow’, ‘4px 4px 0px rgba(0,0,0,0.1)’)
.style(‘border’, ‘1px solid black’)
.style(‘font-family’, ‘sans-serif’)
.style(‘font-size’, options.font_size)
.style(‘position’, ‘absolute’)
.style(‘z-index’, ‘10’)
.attr(‘pointer-events’, ‘none’)
.style(‘display’, ‘none’);

// Create canvas
const svg = plot.append(‘svg’).attr(‘width’, width).attr(‘height’, height);
const graph =
svg.style(‘overflow’, ‘visible’)
.append(‘g’)
.attr(‘font-family’, ‘sans-serif’)
.attr(‘font-size’, options.font_size)
.attr(
‘transform’,
() => translate(${options.margin},${ - x_min + options.node_y_offset / 2 + options.margin}));

// Plot bounding box.
if (options.show_plot_bounding_box) {
svg.append(‘rect’)
.attr(‘width’, width)
.attr(‘height’, height)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘black’);
}

// Draw the edges.
display_edges(options, graph, tree_struct);

// Draw the nodes.
display_nodes(options, graph, tree_struct);
}

/**

  • Draw the nodes of the tree.
  • @param {!options} options Dictionary of configurations.
  • @param {!graph} graph D3 search handle containing the graph.
  • @param {!tree_struct} tree_struct Structure of the tree (node placement,
  • data, etc.).
    

*/
function display_nodes(options, graph, tree_struct) {
const nodes = graph.append(‘g’)
.selectAll(‘g’)
.data(tree_struct.descendants())
.join(‘g’)
.attr(‘transform’, d => translate(${d.y},${d.x}));

nodes.append(‘rect’)
.attr(‘x’, 0.5)
.attr(‘y’, 0.5)
.attr(‘width’, options.node_x_size)
.attr(‘height’, options.node_y_size)
.attr(‘stroke’, ‘lightgrey’)
.attr(‘stroke-width’, 1)
.attr(‘fill’, ‘white’)
.attr(‘y’, -options.node_y_size / 2);

// Brackets on the right of condition nodes without children.
non_leaf_node_without_children =
nodes.filter(node => node.data.condition != null && node.children == null)
.append(‘g’)
.attr(‘transform’, translate(${options.node_x_size},0));

non_leaf_node_without_children.append(‘path’)
.attr(‘d’, ‘M0,0 C 10,0 0,10 10,10’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘#F00’);

non_leaf_node_without_children.append(‘path’)
.attr(‘d’, ‘M0,0 C 10,0 0,-10 10,-10’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.0)
.attr(‘stroke’, ‘#0F0’);

const node_content = nodes.append(‘g’).attr(
‘transform’,
translate(0,${options.node_padding - options.node_y_size / 2}));

node_content.append(node => create_node_element(options, node));
}

/**

  • Creates the D3 content for a single node.
  • @param {!options} options Dictionary of configurations.
  • @param {!node} node Node to draw.
  • @return {!d3} D3 content.
    */
    function create_node_element(options, node) {
    // Output accumulator.
    let output = {
    // Content to draw.
    content: d3.create(‘svg:g’),
    // Vertical offset to the next element to draw.
    vertical_offset: 0
    };

// Conditions.
if (node.data.condition != null) {
display_condition(options, node.data.condition, output);
}

// Values.
if (node.data.value != null) {
display_value(options, node.data.value, output);
}

// Explanations.
if (node.data.explanation != null) {
display_explanation(options, node.data.explanation, output);
}

return output.content.node();
}

/**

  • Adds a single line of text inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {string} text Text to display.
  • @param {!output} output Output display accumulator.
    */
    function display_node_text(options, text, output) {
    output.content.append(‘text’)
    .attr(‘x’, options.node_padding)
    .attr(‘y’, output.vertical_offset)
    .attr(‘alignment-baseline’, ‘hanging’)
    .text(text);
    output.vertical_offset += 10;
    }

/**

  • Adds a single line of text inside of a node with a tooltip.
  • @param {!options} options Dictionary of configurations.
  • @param {string} text Text to display.
  • @param {string} tooltip Text in the Tooltip.
  • @param {!output} output Output display accumulator.
    */
    function display_node_text_with_tooltip(options, text, tooltip, output) {
    const item = output.content.append(‘text’)
    .attr(‘x’, options.node_padding)
    .attr(‘alignment-baseline’, ‘hanging’)
    .text(text);

add_tooltip(options, item, () => tooltip);
output.vertical_offset += 10;
}

/**

  • Adds a tooltip to a dom element.
  • @param {!options} options Dictionary of configurations.
  • @param {!dom} target Dom element to equip with a tooltip.
  • @param {!func} get_content Generates the html content of the tooltip.
    */
    function add_tooltip(options, target, get_content) {
    function show(d) {
    options.tooltip.style(‘display’, ‘block’);
    options.tooltip.html(get_content());
    }

function hide(d) {
options.tooltip.style(‘display’, ‘none’);
}

function move(d) {
options.tooltip.style(‘display’, ‘block’);
options.tooltip.style(‘left’, (d.pageX + 5) + ‘px’);
options.tooltip.style(‘top’, d.pageY + ‘px’);
}

target.on(‘mouseover’, show);
target.on(‘mouseout’, hide);
target.on(‘mousemove’, move);
}

/**

  • Adds a condition inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {!condition} condition Condition to display.
  • @param {!output} output Output display accumulator.
    */
    function display_condition(options, condition, output) {
    threshold_format = d3.format(‘r’);

if (condition.type === ‘IS_MISSING’) {
display_node_text(options, ${condition.attribute} is missing, output);
return;
}

if (condition.type === ‘IS_TRUE’) {
display_node_text(options, ${condition.attribute} is true, output);
return;
}

if (condition.type === ‘NUMERICAL_IS_HIGHER_THAN’) {
format = d3.format(‘r’);
display_node_text(
options,
${condition.attribute} >= ${threshold_format(condition.threshold)},
output);
return;
}

if (condition.type === ‘CATEGORICAL_IS_IN’) {
display_node_text_with_tooltip(
options, ${condition.attribute} in [...],
${condition.attribute} in [${condition.mask}], output);
return;
}

if (condition.type === ‘CATEGORICAL_SET_CONTAINS’) {
display_node_text_with_tooltip(
options, ${condition.attribute} intersect [...],
${condition.attribute} intersect [${condition.mask}], output);
return;
}

if (condition.type === ‘NUMERICAL_SPARSE_OBLIQUE’) {
display_node_text_with_tooltip(
options, Sparse oblique split...,
[${condition.attributes}]*[${condition.weights}]>=${ threshold_format(condition.threshold)},
output);
return;
}

display_node_text(
options, Non supported condition ${condition.type}, output);
}

/**

  • Adds a value inside of a node.

  • @param {!options} options Dictionary of configurations.

  • @param {!value} value Value to display.

  • @param {!output} output Output display accumulator.
    */
    function display_value(options, value, output) {
    if (value.type === ‘PROBABILITY’) {
    const left_margin = 0;
    const right_margin = 50;
    const plot_width = options.node_x_size - options.node_padding * 2 -
    left_margin - right_margin;

    let cusum = Array.from(d3.cumsum(value.distribution));
    cusum.unshift(0);
    const distribution_plot = output.content.append(‘g’).attr(
    ‘transform’, translate(0,${output.vertical_offset + 0.5}));

    distribution_plot.selectAll(‘rect’)
    .data(value.distribution)
    .join(‘rect’)
    .attr(‘height’, 10)
    .attr(
    ‘x’,
    (d, i) =>
    (cusum[i] * plot_width + left_margin + options.node_padding))
    .attr(‘width’, (d, i) => d * plot_width)
    .style(‘fill’, (d, i) => d3.schemeSet1[i]);

    const num_examples =
    output.content.append(‘g’)
    .attr(‘transform’, translate(0,${output.vertical_offset}))
    .append(‘text’)
    .attr(‘x’, options.node_x_size - options.node_padding)
    .attr(‘alignment-baseline’, ‘hanging’)
    .attr(‘text-anchor’, ‘end’)
    .text((${value.num_examples}));

    const distribution_details = d3.create(‘ul’);
    distribution_details.selectAll(‘li’)
    .data(value.distribution)
    .join(‘li’)
    .append(‘span’)
    .text(
    (d, i) =>
    ‘class ’ + i + ‘: ’ + d3.format(’.3%’)(value.distribution[i]));

    add_tooltip(options, distribution_plot, () => distribution_details.html());
    add_tooltip(options, num_examples, () => ‘Number of examples’);

    output.vertical_offset += 10;
    return;
    }

if (value.type === ‘REGRESSION’) {
display_node_text(
options,
‘value: ’ + d3.format(‘r’)(value.value) + ( +
d3.format(’.6’)(value.num_examples) + ),
output);
return;
}

display_node_text(options, Non supported value ${value.type}, output);
}

/**

  • Adds an explanation inside of a node.
  • @param {!options} options Dictionary of configurations.
  • @param {!explanation} explanation Explanation to display.
  • @param {!output} output Output display accumulator.
    */
    function display_explanation(options, explanation, output) {
    // Margin before the explanation.
    output.vertical_offset += 10;

display_node_text(
options, Non supported explanation ${explanation.type}, output);
}

/**

  • Draw the edges of the tree.
  • @param {!options} options Dictionary of configurations.
  • @param {!graph} graph D3 search handle containing the graph.
  • @param {!tree_struct} tree_struct Structure of the tree (node placement,
  • data, etc.).
    

*/
function display_edges(options, graph, tree_struct) {
// Draw an edge between a parent and a child node with a bezier.
function draw_single_edge(d) {
return ‘M’ + (d.source.y + options.node_x_size) + ‘,’ + d.source.x + ’ C’ +
(d.source.y + options.node_x_size + options.edge_rounding) + ‘,’ +
d.source.x + ’ ’ + (d.target.y - options.edge_rounding) + ‘,’ +
d.target.x + ’ ’ + d.target.y + ‘,’ + d.target.x;
}

graph.append(‘g’)
.attr(‘fill’, ‘none’)
.attr(‘stroke-width’, 1.2)
.selectAll(‘path’)
.data(tree_struct.links())
.join(‘path’)
.attr(‘d’, draw_single_edge)
.attr(
‘stroke’, d => (d.target === d.source.children[0]) ? ‘#0F0’ : ‘#F00’);
}

display_tree({“margin”: 10, “node_x_size”: 160, “node_y_size”: 28, “node_x_offset”: 180, “node_y_offset”: 33, “font_size”: 10, “edge_rounding”: 20, “node_padding”: 2, “show_plot_bounding_box”: false, “labels”: “[“red”, “blue”, “green”]”}, {“condition”: {“type”: “NUMERICAL_IS_HIGHER_THAN”, “attribute”: “f1”, “threshold”: 1.5}, “children”: [{“condition”: {“type”: “CATEGORICAL_IS_IN”, “attribute”: “f2”, “mask”: [“cat”, “dog”]}, “children”: [{“value”: {“type”: “PROBABILITY”, “distribution”: [0.8, 0.1, 0.1], “num_examples”: 10.0}}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.1, 0.8, 0.1], “num_examples”: 20.0}}]}, {“value”: {“type”: “PROBABILITY”, “distribution”: [0.1, 0.1, 0.8], “num_examples”: 30.0}}]}, “#tree_plot_34c8fb6cf7ca49eda845b971be7f0560”)

这篇关于工具系列:TensorFlow决策森林_(7)检查和调试决策森林模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534668

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费