Kmeans 算法 修改 anchor

2023-12-24 23:08
文章标签 算法 修改 anchor kmeans

本文主要是介绍Kmeans 算法 修改 anchor,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

新建文件 kmeans.py

import numpy as npdef iou(box, clusters):"""Calculates the Intersection over Union (IoU) between a box and k clusters.:param box: tuple or array, shifted to the origin (i. e. width and height):param clusters: numpy array of shape (k, 2) where k is the number of clusters:return: numpy array of shape (k, 0) where k is the number of clusters"""x = np.minimum(clusters[:, 0], box[0])y = np.minimum(clusters[:, 1], box[1])if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:raise ValueError("Box has no area")intersection = x * ybox_area = box[0] * box[1]cluster_area = clusters[:, 0] * clusters[:, 1]iou_ = intersection / (box_area + cluster_area - intersection)return iou_def avg_iou(boxes, clusters):"""Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.:param boxes: numpy array of shape (r, 2), where r is the number of rows:param clusters: numpy array of shape (k, 2) where k is the number of clusters:return: average IoU as a single float"""return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])def translate_boxes(boxes):"""Translates all the boxes to the origin.:param boxes: numpy array of shape (r, 4):return: numpy array of shape (r, 2)"""new_boxes = boxes.copy()for row in range(new_boxes.shape[0]):new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])return np.delete(new_boxes, [0, 1], axis=1)def kmeans(boxes, k, dist=np.median):"""Calculates k-means clustering with the Intersection over Union (IoU) metric.:param boxes: numpy array of shape (r, 2), where r is the number of rows:param k: number of clusters:param dist: distance function:return: numpy array of shape (k, 2)"""rows = boxes.shape[0]distances = np.empty((rows, k))last_clusters = np.zeros((rows,))np.random.seed()# the Forgy method will fail if the whole array contains the same rowsclusters = boxes[np.random.choice(rows, k, replace=False)]while True:for row in range(rows):distances[row] = 1 - iou(boxes[row], clusters)nearest_clusters = np.argmin(distances, axis=1)if (last_clusters == nearest_clusters).all():breakfor cluster in range(k):clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)last_clusters = nearest_clustersreturn clusters

新建文件 example.py

import glob
import xml.etree.ElementTree as ETimport numpy as npfrom kmeans import kmeans, avg_iouANNOTATIONS_PATH = "path/Annotations"
CLUSTERS = 9def load_dataset(path):dataset = []for xml_file in glob.glob("{}/*xml".format(path)):tree = ET.parse(xml_file)height = int(tree.findtext("./size/height"))width = int(tree.findtext("./size/width"))for obj in tree.iter("object"):xmin = int(obj.findtext("bndbox/xmin")) / widthymin = int(obj.findtext("bndbox/ymin")) / heightxmax = int(obj.findtext("bndbox/xmax")) / widthymax = int(obj.findtext("bndbox/ymax")) / heightdataset.append([xmax - xmin, ymax - ymin])return np.array(dataset)data = load_dataset(ANNOTATIONS_PATH)
out = kmeans(data, k=CLUSTERS)
print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100))
# print("Boxes:\n {}".format(out))
# print("Boxes:\n {}-{}".format(out[:, 0], out[:, 1]))
print(out[:, 0] / out[:, 1])ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
print("Ratios:\n {}".format(sorted(ratios)))

输出如下:

Accuracy: 88.11%
[0.88394192 0.73313783 0.73044577 0.76032522 0.70908138 0.76894224 0.75933618 0.77438715 0.79756781]
Ratios: [0.71, 0.73, 0.73, 0.76, 0.76, 0.77, 0.77, 0.8, 0.88]

最大值是0.8839, 最小值是0.7090。

在这里我们继续使用faster rcnn中的base_size=16这一设定

原始论文中,ratios=[0.5, 1, 2]。在这里ratios=[0.8, 1, 1.25],0.8=0.7090/0.8839,1.25=0.8839/0.7090

原始论文中 scales=2**np.arange(3, 6)=(6, 8, 10),在这里根据输入图片的尺度,结合进行修改。

这篇关于Kmeans 算法 修改 anchor的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533439

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接

Mysql8.0修改配置文件my.ini的坑及解决

《Mysql8.0修改配置文件my.ini的坑及解决》使用记事本直接编辑my.ini文件保存后,可能会导致MySQL无法启动,因为MySQL会以ANSI编码读取该文件,解决方法是使用Notepad++... 目录Myhttp://www.chinasem.cnsql8.0修改配置文件my.ini的坑出现的问题

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费