040、全卷积

2023-12-24 22:28
文章标签 卷积 040

本文主要是介绍040、全卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之——FCN

目录

之——FCN

杂谈

正文

1.FCN

2.实现


杂谈

        FCN(Fully Convolutional Network)是一种深度学习网络架构,专门设计用于语义分割任务。传统的深度学习网络如卷积神经网络(CNN)在处理图像时通常用于分类任务,即将整个输入图像映射到一个或多个类别。然而,在许多实际应用中,我们需要对图像中的每个像素进行分类,这就是语义分割的任务。

        FCN的主要贡献在于将传统的全连接层(fully connected layers)替换为全卷积层(fully convolutional layers),使网络能够接受任意大小的输入图像,并输出相同大小的像素级别的预测。这种架构的主要优势是可以对整个图像进行端到端的学习,而不需要预定义固定大小的输入。

        以下是FCN网络的主要组成部分:

  1. 卷积层(Convolutional Layers): FCN使用卷积层来提取图像中的特征。这些卷积层可以学习到图像的低级和高级特征。

  2. 池化层(Pooling Layers): 池化层用于减小特征图的空间分辨率,帮助网络更好地捕捉图像中的不同尺度的信息。

  3. 反卷积层(Deconvolutional Layers): 反卷积层或转置卷积层用于将低分辨率的特征图上采样到与输入图像相同的分辨率,从而获得像素级别的预测。

  4. 跳跃连接(Skip Connections): 为了更好地保留空间信息,FCN引入了跳跃连接,将低级别和高级别的特征图进行融合,使网络能够同时利用细粒度和粗粒度的信息。

  5. 融合层(Score Fusion Layer): 在最后的层次,将不同分辨率的特征图进行融合,生成最终的分割结果。

        FCN被广泛应用于各种图像分割任务,包括语义分割、实例分割等。它为深度学习在计算机视觉领域的发展贡献了重要的思想和技术。


正文

1.FCN

        全卷积网络先使用卷积神经网络抽取图像特征,然后通过1×1卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 也就是一个类别通道预测一张类别掩膜图,因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空间位置像素的类别预测。


2.实现

        主要是依靠从resnet18的卷积层提取特征,然后将最后的全连接层和全局卷积层换成全卷积层,依靠转置卷积来拟合最后的类别掩膜图。详情见教材。


        UNet是一种典型的全卷积网络(FCN)。UNet的结构设计旨在解决语义分割任务,类似于FCN,但它具有一些独特的架构特点,使其在医学图像分割等领域中得到广泛应用。

        UNet的结构包括对称的编码器(下采样路径)和解码器(上采样路径)。这种对称结构使得网络能够同时利用全局信息和局部细节,使其在分割任务中表现优异。

        UNet的主要组成部分如下:

  1. 编码器(Contracting Path): 编码器由一系列卷积和池化层组成,负责将输入图像进行下采样,提取高级语义特征。

  2. 中间连接(Bottleneck): 编码器和解码器之间存在一个中间连接,通常是一个单一的卷积层,用于捕捉全局信息。

  3. 解码器(Expansive Path): 解码器由一系列卷积和上采样层组成,负责将编码器提取的特征进行上采样,恢复分辨率,并生成最终的分割结果。

  4. 跳跃连接(Skip Connections): UNet引入了跳跃连接,将编码器的某些层与解码器的对应层进行连接,使网络能够融合不同分辨率的特征,提高分割准确性。

  5. 最终分类层: 在解码器的最后一层通常使用卷积层,将特征映射到最终的分割结果。

        UNet的结构使其适用于小样本训练和高分辨率图像分割任务,因为它可以有效地捕捉不同尺度的信息。UNet被广泛用于医学图像分割、卫星图像分割等领域,成为深度学习图像分割任务中的经典模型之一。

这篇关于040、全卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533331

相关文章

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

深度学习基础--卷积的变种

随着卷积同经网络在各种问题中的广泛应用,卷积层也逐渐衍生出了许多变种,比较有代表性的有: 分组卷积( Group Convolution )、转置卷积 (Transposed Convolution) 、空洞卷积( Dilated/Atrous Convolution )、可变形卷积( Deformable Convolution ),下面分别介绍下。 1. 分组卷积 在普通的卷积操作中,一个

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

卷积神经网络(二)CIFAR100类别分类

一.数据介绍 总共一百个类,每个类有600个图像。每类500个训练图像,100个测试图像。没填图像都带有一个"精细"标签(它所属的类)核一个粗糙标签(它所属的超类)  二.API使用 用于构建CNN模型的API Conv2D:实现卷积,kernel_size,strides,padding,datafromat,'NHWC'核'NCHW' MaxPool2D:池化操作 impo

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则

文章目录 1. ImageNet2. 卷积计算2.1 两个多项式卷积2.2 函数卷积2.3 循环卷积 3. 周期循环矩阵和非周期循环矩阵4. 循环卷积特征值4.1 卷积计算的分解4.2 运算量4.3 二维卷积公式 5. Kronecker Product 1. ImageNet ImageNet 的论文paper链接如下:详细请直接阅读相关论文即可 通过网盘分享的文件:image

【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测

本文介绍了如何使用训练好的ResNet-50模型进行图片预测。通过详细阐述模型原理、训练过程及预测步骤,帮助读者掌握基于深度学习的图片识别技术。 一、引言 近年来,深度学习技术在计算机视觉领域取得了显著成果,特别是卷积神经网络(CNN)在图像识别、分类等方面表现出色。ResNet-50作为一种经典的CNN模型,以其强大的特征提取能力和较高的预测准确率,在众多领域得到了广泛应用。本文将介绍如何使

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课