《LIO-SAM阅读笔记》1.IMU预积分模块

2023-12-24 19:30

本文主要是介绍《LIO-SAM阅读笔记》1.IMU预积分模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

        LIO-SAM是一个多传感器融合的紧耦合SLAM框架,融合的传感器类型有雷达、IMU和GPS,其中雷达和IMU在LIO-SAM框架中必须使用的。LIO-SAM的优化策略采用了GTSAM库,GTSAM库采用了因子图的优化方法,其提供了一些列C++的外部接口,以便用户方便传入参数等进行优化。特别的是GTSAM库专门单独设计关于IMU计算与优化的接口。

        IMU预积分模块在LIO-SAM源码中写在了imuPreintegration.cpp文件中,其中预积分模块的功能使用class IMUPreintegration来实现,IMUPreintegration类中构造函数中最主要的两个部分分别是imu的回调函数imuHandler和odom的回调函数odometryHandler。

1.IMU回调函数imuHandler

2.odom回调函数odometryHandler

在odometryHandler回调函数中主要进行了imu数据和lidar的里程计数据联合进行因子图优化的操作。

2.1 odometryHandler中进行的主要操作
  • Step 0. 系统初始化,第一帧
  • Step 1. 计算前一帧与当前帧之间的imu预积分量,用前一帧状态施加预积分量得到当前帧初始状态估计,添加来自mapOptimization的当前帧位姿,进行因子图优化,更新当前帧状态
  • Step 2. 优化之后,执行重传播;优化更新了imu的偏置,用最新的偏置重新计算当前激光里程计时刻之后的imu预积分,这个预积分用于计算每时刻位姿。
  • Step 3. 每隔100帧激光里程计,重置ISAM2优化器,保证优化效率
2.2 因子图优化的步骤
  • 1.添加imu预积分因子
// 上面imu预积分的结果
const gtsam::PreintegratedImuMeasurements &preint_imu = dynamic_cast<const gtsam::PreintegratedImuMeasurements &>(*imuIntegratorOpt_);
// 参数:前一帧位姿,前一帧速度,当前帧位姿,当前帧速度,前一帧偏置,预计分量   //?:此处的当前帧位姿和当前帧速度是哪里得到的?此处是否是待求量?
gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
graphFactors.add(imu_factor);
  • 2.添加imu偏置因子,前一帧偏置,当前帧偏置,观测值,噪声协方差;deltaTij()是积分段的时间
graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),gtsam::noiseModel::Diagonal::Sigmas(sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
  • 3.添加位姿因子
gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, degenerate ? correctionNoise2 : correctionNoise);
graphFactors.add(pose_factor);
// 用前一帧的状态、偏置,施加imu预计分量,得到当前帧的状态  // note: 前一帧的状态是经过上一次优化后的结果
gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
  • 4.变量节点赋初值
graphValues.insert(X(key), propState_.pose());
graphValues.insert(V(key), propState_.v());
graphValues.insert(B(key), prevBias_);
  • 5.优化
optimizer.update(graphFactors, graphValues);
optimizer.update();
graphFactors.resize(0);
graphValues.clear();
// 优化结果
gtsam::Values result = optimizer.calculateEstimate();

注意: 每优化完成一次后,就会清空因子图和变量,优化器是每100帧重置一次。因此每次向优化器内添加的因子图和变量是一一对应的。

  • 6.利用优化结果更新状态量
// 更新当前帧位姿、速度
prevPose_ = result.at<gtsam::Pose3>(X(key));
prevVel_ = result.at<gtsam::Vector3>(V(key));
// 更新当前帧状态
prevState_ = gtsam::NavState(prevPose_, prevVel_);
// 更新当前帧imu偏置
prevBias_ = result.at<gtsam::imuBias::ConstantBias>(B(key));
  • 7.重置预积分器,设置新的偏置,这样下一帧激光里程计进来的时候,预积分量就是两帧之间的增量
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
2.3 因子图优化之后的重传播步骤

        这里用一张示意图来表达,这一部操作最主要的原因是:imu接受数据的频率大于odom里程计的数据,因此每来一个odom数据,队列中已经有多个imu数据,而因子图优化的频率是按照odom里程计的频率来进行的,因此如果想要得到每一个imu数据时刻的位姿估计就要以最近的odom时刻的位姿为初始值,通过每个imu数据时刻的预积分进行位姿的传播。

效果展示:此处一小段粉红色的轨迹就是通过经过因子图优化后的重传播(IMU预积分)预测出的轨迹,前面蓝色的轨迹是因子图优化得到的轨迹。

这篇关于《LIO-SAM阅读笔记》1.IMU预积分模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532870

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓