《LIO-SAM阅读笔记》1.IMU预积分模块

2023-12-24 19:30

本文主要是介绍《LIO-SAM阅读笔记》1.IMU预积分模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

        LIO-SAM是一个多传感器融合的紧耦合SLAM框架,融合的传感器类型有雷达、IMU和GPS,其中雷达和IMU在LIO-SAM框架中必须使用的。LIO-SAM的优化策略采用了GTSAM库,GTSAM库采用了因子图的优化方法,其提供了一些列C++的外部接口,以便用户方便传入参数等进行优化。特别的是GTSAM库专门单独设计关于IMU计算与优化的接口。

        IMU预积分模块在LIO-SAM源码中写在了imuPreintegration.cpp文件中,其中预积分模块的功能使用class IMUPreintegration来实现,IMUPreintegration类中构造函数中最主要的两个部分分别是imu的回调函数imuHandler和odom的回调函数odometryHandler。

1.IMU回调函数imuHandler

2.odom回调函数odometryHandler

在odometryHandler回调函数中主要进行了imu数据和lidar的里程计数据联合进行因子图优化的操作。

2.1 odometryHandler中进行的主要操作
  • Step 0. 系统初始化,第一帧
  • Step 1. 计算前一帧与当前帧之间的imu预积分量,用前一帧状态施加预积分量得到当前帧初始状态估计,添加来自mapOptimization的当前帧位姿,进行因子图优化,更新当前帧状态
  • Step 2. 优化之后,执行重传播;优化更新了imu的偏置,用最新的偏置重新计算当前激光里程计时刻之后的imu预积分,这个预积分用于计算每时刻位姿。
  • Step 3. 每隔100帧激光里程计,重置ISAM2优化器,保证优化效率
2.2 因子图优化的步骤
  • 1.添加imu预积分因子
// 上面imu预积分的结果
const gtsam::PreintegratedImuMeasurements &preint_imu = dynamic_cast<const gtsam::PreintegratedImuMeasurements &>(*imuIntegratorOpt_);
// 参数:前一帧位姿,前一帧速度,当前帧位姿,当前帧速度,前一帧偏置,预计分量   //?:此处的当前帧位姿和当前帧速度是哪里得到的?此处是否是待求量?
gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
graphFactors.add(imu_factor);
  • 2.添加imu偏置因子,前一帧偏置,当前帧偏置,观测值,噪声协方差;deltaTij()是积分段的时间
graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),gtsam::noiseModel::Diagonal::Sigmas(sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
  • 3.添加位姿因子
gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, degenerate ? correctionNoise2 : correctionNoise);
graphFactors.add(pose_factor);
// 用前一帧的状态、偏置,施加imu预计分量,得到当前帧的状态  // note: 前一帧的状态是经过上一次优化后的结果
gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
  • 4.变量节点赋初值
graphValues.insert(X(key), propState_.pose());
graphValues.insert(V(key), propState_.v());
graphValues.insert(B(key), prevBias_);
  • 5.优化
optimizer.update(graphFactors, graphValues);
optimizer.update();
graphFactors.resize(0);
graphValues.clear();
// 优化结果
gtsam::Values result = optimizer.calculateEstimate();

注意: 每优化完成一次后,就会清空因子图和变量,优化器是每100帧重置一次。因此每次向优化器内添加的因子图和变量是一一对应的。

  • 6.利用优化结果更新状态量
// 更新当前帧位姿、速度
prevPose_ = result.at<gtsam::Pose3>(X(key));
prevVel_ = result.at<gtsam::Vector3>(V(key));
// 更新当前帧状态
prevState_ = gtsam::NavState(prevPose_, prevVel_);
// 更新当前帧imu偏置
prevBias_ = result.at<gtsam::imuBias::ConstantBias>(B(key));
  • 7.重置预积分器,设置新的偏置,这样下一帧激光里程计进来的时候,预积分量就是两帧之间的增量
imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
2.3 因子图优化之后的重传播步骤

        这里用一张示意图来表达,这一部操作最主要的原因是:imu接受数据的频率大于odom里程计的数据,因此每来一个odom数据,队列中已经有多个imu数据,而因子图优化的频率是按照odom里程计的频率来进行的,因此如果想要得到每一个imu数据时刻的位姿估计就要以最近的odom时刻的位姿为初始值,通过每个imu数据时刻的预积分进行位姿的传播。

效果展示:此处一小段粉红色的轨迹就是通过经过因子图优化后的重传播(IMU预积分)预测出的轨迹,前面蓝色的轨迹是因子图优化得到的轨迹。

这篇关于《LIO-SAM阅读笔记》1.IMU预积分模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532870

相关文章

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Python模块导入的几种方法实现

《Python模块导入的几种方法实现》本文主要介绍了Python模块导入的几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录一、什么是模块?二、模块导入的基本方法1. 使用import整个模块2.使用from ... i

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听