0.618算法和基于Armijo准则的线搜索回退法

2023-12-24 19:01

本文主要是介绍0.618算法和基于Armijo准则的线搜索回退法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.618代码如下:

import math

# 定义函数h(t) = t^3 - 2t + 1

def h(t):

    return t**3 - 2*t + 1

# 0.618算法

def golden_section_search(a, b, epsilon): 

    ratio = 0.618 

    while (b - a) > epsilon: 

        x1 = b - ratio * (b - a) 

        x2 = a + ratio * (b - a) 

        h_x1 = h(x1) 

        h_x2 = h(x2) 

        if h_x1 < h_x2: 

            b = x2 

        else: 

            a = x1 

    return a  # 或者返回 b,因为它们的值非常接近

# t 大于等于 0 的范围内进行搜索

t_min_618 = golden_section_search(0, 3, 0.001)

print("0.618算法找到的最小值:", h(t_min_618))

基于Armijo准则的线搜索回退法代码如下:

import numpy as np 

  def h(t): 

    return t**3 - 2*t + 1 

  def h_derivative(t): 

    return 3*t**2 - 2 

  def armijo_line_search(t_current, direction, alpha, beta, c1): 

    t = t_current 

    step_size = 1.0 

    while True: 

        if h(t + direction * step_size) <= h(t) + alpha * step_size * direction * h_derivative(t): 

            return t + direction * step_size 

        else: 

            step_size *= beta 

        if np.abs(step_size) < 1e-6: 

            break 

    return None 

  def gradient_descent(start, end, alpha, beta, c1, epsilon): 

    t = start 

    while True: 

        if t > end: 

            break 

        direction = -h_derivative(t)  # 负梯度方向 

        next_t = armijo_line_search(t, direction, alpha, beta, c1) 

        if next_t is None or np.abs(h_derivative(next_t)) <= epsilon: 

            return next_t 

        t = next_t 

    return None 

  # 参数设置 

alpha = 0.1  # Armijo准则中的参数alpha 

beta = 0.5  # Armijo准则中的参数beta 

c1 = 1e-4  # 自定义参数,用于控制Armijo条件的满足程度 

epsilon = 1e-6  # 梯度范数的终止条件 

  # 搜索区间为[0,3] 

start = 0 

end = 3 

  # 执行梯度下降算法,求得近似最小值点 

t_min = gradient_descent(start, end, alpha, beta, c1, epsilon) 

print("求得的最小值点为:", t_min) 

print("最小值点的函数值为:", h(t_min))

这篇关于0.618算法和基于Armijo准则的线搜索回退法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532801

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1