AI项目十九:YOLOV8实现目标追踪

2023-12-24 18:36

本文主要是介绍AI项目十九:YOLOV8实现目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若该文为原创文章,转载请注明原文出处。

主要是学习一下实现目标追踪的原理,并测试一下效果。

目的是通过YOLOV8实现人员检测,并实现人员追踪,没个人员给分配一个ID,实现追踪的效果。

也可以统计人数。在小区办公楼的出入场所,这类很常见。

一、简介

追踪任务是指识别和跟踪特定目标在视频序列中的运动和位置,一般用唯一ID或固定颜色检测框表示),如下图:

目标检测和目标跟踪的区别:
目标检测:目标检测任务要求同时完成对象的定位(即确定对象的边界框位置)和分类(即确定对象的类别)。这意味着目标检测算法必须不仅能够确定对象是否存在,还要知道它是什么。
目标检测通常用于识别和定位图像或视频帧中的对象,通常需要明确的目标类别信息。
目标跟踪:目标跟踪任务更关注对象在帧与帧之间的连续性,通常更注重对象的运动特征,而不要求进行目标的分类。
目标跟踪可以不涉及目标的类别,它的主要目标是维护对象的位置和轨迹,以实现在视频序列中的跟踪。

这里就有个问题,视频中不同时刻的同一个人,位置发生了变化,那么是如何关联上的呢?答案就是匈牙利算法和卡尔曼滤波。

  • 匈牙利算法可以告诉我们当前帧的某个目标,是否与前一帧的某个目标相同。
  • 卡尔曼滤波可以基于目标前一时刻的位置,来预测当前时刻的位置,并且可以比传感器(在目标跟踪中即目标检测器,比如Yolo等)更准确的估计目标的位置。

最经典的是DeepSORT,本篇记录的是如何使用IOU,所以了解下DeepSORT。

DeepSORT对每一帧的处理流程如下:

检测器得到bbox → 生成detections → 卡尔曼滤波预测→ 使用匈牙利算法将预测后的tracks和当前帧中的detecions进行匹配(级联匹配和IOU匹配) → 卡尔曼滤波更新

Frame 0:检测器检测到了3个detections,当前没有任何tracks,将这3个detections初始化为tracks
Frame 1:检测器又检测到了3个detections,对于Frame 0中的tracks,先进行预测得到新的tracks,然后使用匈牙利算法将新的tracks与detections进行匹配,得到(track, detection)匹配对,最后用每对中的detection更新对应的track

二、方法介绍

目前主流的目标跟踪算法都是基于Tracking-by-Detecton策略,即基于目标检测的结果来进行目标跟踪。

实现目标跟踪的方法:

1、IOU

比较前后两帧检测框IOU是否大于指定阈值,是则是同一个物体,不是则分配新ID,此方法对于运动慢的可以,效果差。

2、卡尔曼滤波

卡尔曼滤波是一种用于估计系统状态的优秀算法。它结合了传感器测量和系统模型,通过递归地计算加权平均值,实时更新状态估计。卡尔曼滤波在众多领域,如导航、机器人技术和信号处理中广泛应用,以提高系统的准确性和鲁棒性。

可以用的库:GitHub - adipandas/multi-object-tracker: Multi-object trackers in Python

3、botsort&bytetrack

BoT-SORT是今年非常游戏的跟踪器模型。就所有主要 MOT 指标MOTA、IDF1 和 HOTA而言,BoT-SORT 和 BoT-SORT-ReID 在 MOT17 和 MOT20 测试集的 MOTChallenge数据集中排名第一。对于 MOT17:实现了 80.5 MOTA、80.2 IDF1 和 65.0 HOTA,在跟踪器的排行榜上暂居第一。
论文翻译:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/126890651
论文链接:https://arxiv.org/pdf/2206.14651.pdf
代码:https://github.com/NirAharon/BOT-SORT
 

ByteTrack是基于tracking-by-detection范式的跟踪方法。大多数多目标跟踪方法通过关联分数高于阈值的检测框来获取目标ID。对于检测分数较低的目标,例如遮挡目标,会被简单的丢弃,这带来了不可忽略的问题,包括大量的漏检和碎片化轨迹。为了解决该问题,作者提出了一种简单、高效且通用的数据关联方法BYTE,通过关联每个检测框而不仅仅是高分检测框来进行跟踪。对于低分检测框,利用它们与轨迹的相似性来恢复真实目标并过滤掉背景检测。

BoT-SORT:https://github.com/NirAharon/BoT-SORT

ByteTrack :https://github.com/ifzhang/ByteTrack

三、IOU实现目标追踪

1、环境安装

本人的电脑使用的是CPU(无GPU)版本,所以直接安装,GPU需要安装CUDA等,自行安装。

# 使用Conda为本项目单独创建一个虚拟环境(python 3.8版本)
conda create -n yolov8_env python=3.8
# 激活进入环境
conda activate yolov8_env# YOLOv8安装方式
pip install ultralytics

2、验证

# 图片cli验证
yolo predict model=yolov8n.pt source=./bus.jpg# 视频cli验证
yolo predict model=yolov8n.pt source=./test.mp4

3、使用python验证

使用python语言验证主要是熟悉YOLOV8的API,知道如何调用,并测试。

from ultralytics import YOLO
import cv2
import numpy as np
import time# 加载模型
model = YOLO("./yolov8n.pt")  # load a pretrained model (recommended for training)
objs_labels = model.names  # get class labels
print(objs_labels)# 打开摄像头
cap = cv2.VideoCapture(0)while True:# 读取一帧start_time = time.time()ret, frame = cap.read()if ret:# 检测result = list(model(frame, stream=True))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器boxes = result.boxes  # Boxes object for bbox outputsboxes = boxes.cpu().numpy()  # convert to numpy array# 遍历每个框for box in boxes.data:l,t,r,b = box[:4].astype(np.int32) # left, top, right, bottomconf, id = box[4:] # confidence, class# 绘制框cv2.rectangle(frame, (l,t), (r,b), (0,0,255), 2)# 绘制类别+置信度(格式:98.1%)cv2.putText(frame, f"{objs_labels[id]} {conf*100:.1f}%", (l, t-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)end_time = time.time()fps = 1 / (end_time - start_time)# 绘制FPScv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)# 显示cv2.imshow("frame", frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:break

在终端里执行python demo.py

4、IOU实现追踪

'''
iou追踪示例
'''
from ultralytics import YOLO
import cv2
import numpy as np
import time
import random
import os
from shapely.geometry import Polygon, LineString
import jsonclass IouTracker:def __init__(self):# 加载检测模型self.detection_model = YOLO("./yolov8n.pt")  # 获取类别 self.objs_labels = self.detection_model.names # 打印类别print(self.objs_labels)# 只处理personself.track_classes = {0: 'person'}# 追踪的IOU阈值self.sigma_iou = 0.5# detection thresholdself.conf_thresh = 0.3def iou(sel,bbox1, bbox2):"""计算两个bounding box的IOU"""(x0_1, y0_1, x1_1, y1_1) = bbox1(x0_2, y0_2, x1_2, y1_2) = bbox2# 计算重叠的矩形的坐标overlap_x0 = max(x0_1, x0_2)overlap_y0 = max(y0_1, y0_2)overlap_x1 = min(x1_1, x1_2)overlap_y1 = min(y1_1, y1_2)# 检查是否有重叠if overlap_x1 - overlap_x0 <= 0 or overlap_y1 - overlap_y0 <= 0:return 0# 计算重叠矩形的面积以及两个矩形的面积size_1 = (x1_1 - x0_1) * (y1_1 - y0_1)size_2 = (x1_2 - x0_2) * (y1_2 - y0_2)size_intersection = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0)size_union = size_1 + size_2 - size_intersection# 计算IOUreturn size_intersection / size_uniondef predict(self, frame):'''检测'''result = list(self.detection_model(frame, stream=True, conf=self.conf_thresh))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器boxes = result.boxes  # Boxes object for bbox outputsboxes = boxes.cpu().numpy()  # convert to numpy arraydets = [] # 检测结果# 遍历每个框for box in boxes.data:l,t,r,b = box[:4] # left, top, right, bottomconf, class_id = box[4:] # confidence, class# 排除不需要追踪的类别if class_id not in self.track_classes:continuedets.append({'bbox': [l,t,r,b], 'score': conf, 'class_id': class_id })return detsdef main(self):'''主函数'''# 读取视频cap = cv2.VideoCapture("./media/video.mp4")# 获取视频帧率、宽、高fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))print(f"fps: {fps}, width: {width}, height: {height}")tracks_active = [] # 活跃的跟踪器frame_id = 1 # 帧IDtrack_idx = 1 # 跟踪器ID# writerout = cv2.VideoWriter("./test_out.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (1280, 720))while True:# 读取一帧start_time = time.time()ret, raw_frame = cap.read()if ret:# 检测frame = cv2.resize(raw_frame, (1280, 720))raw_frame = framedets = self.predict(raw_frame)# 更新后的跟踪器updated_tracks = [] # 遍历活跃的跟踪器for track in tracks_active:if len(dets) > 0:# 根据最大IOU更新跟踪器,先去explain.ipynb中看一下MAX用法best_match = max(dets, key=lambda x: self.iou(track['bboxes'][-1], x['bbox'])) # 找出dets中与当前跟踪器(track['bboxes'][-1])最匹配的检测框(IOU最大)# 如果最大IOU大于阈值,则将本次检测结果加入跟踪器if self.iou(track['bboxes'][-1], best_match['bbox']) > self.sigma_iou:# 将本次检测结果加入跟踪器track['bboxes'].append(best_match['bbox'])track['max_score'] = max(track['max_score'], best_match['score'])track['frame_ids'].append(frame_id)# 更新跟踪器updated_tracks.append(track)# 删除已经匹配的检测框,避免后续重复匹配以及新建跟踪器del dets[dets.index(best_match)]# 如有未分配的目标,创建新的跟踪器new_tracks = []for det in dets: # 未分配的目标,已经分配的目标已经从dets中删除new_track = {'bboxes': [det['bbox']], # 跟踪目标的矩形框'max_score': det['score'], # 跟踪目标的最大score'start_frame': frame_id,  # 目标出现的 帧id'frame_ids': [frame_id],  # 目标出现的所有帧id'track_id': track_idx,    # 跟踪标号'class_id': det['class_id'], # 类别'is_counted': False       # 是否已经计数}track_idx += 1new_tracks.append(new_track)# 最终的跟踪器tracks_active = updated_tracks + new_trackscross_line_color = (0,255,0) # 越界线的颜色# 绘制跟踪器for tracker in tracks_active:# 绘制跟踪器的矩形框l,t,r,b = tracker['bboxes'][-1]# 取整l,t,r,b = int(l), int(t), int(r), int(b)class_id = tracker['class_id']cv2.rectangle(raw_frame, (l,t), (r,b), cross_line_color, 2)# 绘制跟踪器的track_id + class_name + score(99.2%格式)cv2.putText(raw_frame, f"{tracker['track_id']}", (l, t-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2)# 设置半透明color = (0,0,0)alpha = 0.2l,t = 0,0r,b = l+240,t+40raw_frame[t:b,l:r,0] = raw_frame[t:b,l:r,0] * alpha + color[0] * (1-alpha)raw_frame[t:b,l:r,1] = raw_frame[t:b,l:r,1] * alpha + color[1] * (1-alpha)raw_frame[t:b,l:r,2] = raw_frame[t:b,l:r,2] * alpha + color[2] * (1-alpha)# end timeend_time = time.time()# FPSfps = 1 / (end_time - start_time)# 绘制FPScv2.putText(raw_frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)# 显示cv2.imshow("frame", raw_frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakout.write(raw_frame)else:breakout.release()  # 实例化
iou_tracker = IouTracker()
# 运行
iou_tracker.main()

测试效果,视频是马路上的,如果想要效果好,建议自己训练模型,使用的是yolov8n.pt模型

如有侵权,或需要完整代码,请及时联系博主。

这篇关于AI项目十九:YOLOV8实现目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532746

相关文章

揭秘未来艺术:AI绘画工具全面介绍

📑前言 随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面。在艺术创作领域,AI技术同样展现出了其独特的魅力。今天,我们就来一起探索这个神秘而引人入胜的领域,深入了解AI绘画工具的奥秘及其为艺术创作带来的革命性变革。 一、AI绘画工具的崛起 1.1 颠覆传统绘画模式 在过去,绘画是艺术家们通过手中的画笔,蘸取颜料,在画布上自由挥洒的创造性过程。然而,随着AI绘画工

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

用Microsoft.Extensions.Hosting 管理WPF项目.

首先引入必要的包: <ItemGroup><PackageReference Include="CommunityToolkit.Mvvm" Version="8.2.2" /><PackageReference Include="Microsoft.Extensions.Hosting" Version="8.0.0" /><PackageReference Include="Serilog

AI儿童绘本创作

之前分享过AI儿童绘画的项目,但是主要问题是角色一致要花费很长的时间! 今天发现了这款,非常奈斯! 只需输入故事主题、风格、模板,软件就会自动创作故事内容,自动生成插画配图,自动根据模板生成成品,测试效果如下图。 变现方式:生成儿童绘本发布到各平台,吸引宝妈群体进私域。  百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全

eclipse运行springboot项目,找不到主类

解决办法尝试了很多种,下载sts压缩包行不通。最后解决办法如图: help--->Eclipse Marketplace--->Popular--->找到Spring Tools 3---->Installed。

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

React+TS前台项目实战(十七)-- 全局常用组件Dropdown封装

文章目录 前言Dropdown组件1. 功能分析2. 代码+详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇主要讲全局Dropdown组件封装,可根据UI设计师要求自定义修改。 Dropdown组件 1. 功能分析 (1)通过position属性,可以控制下拉选项的位置 (2)通过传入width属性, 可以自定义下拉选项的宽度 (3)通过传入classN

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多