AI项目十九:YOLOV8实现目标追踪

2023-12-24 18:36

本文主要是介绍AI项目十九:YOLOV8实现目标追踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若该文为原创文章,转载请注明原文出处。

主要是学习一下实现目标追踪的原理,并测试一下效果。

目的是通过YOLOV8实现人员检测,并实现人员追踪,没个人员给分配一个ID,实现追踪的效果。

也可以统计人数。在小区办公楼的出入场所,这类很常见。

一、简介

追踪任务是指识别和跟踪特定目标在视频序列中的运动和位置,一般用唯一ID或固定颜色检测框表示),如下图:

目标检测和目标跟踪的区别:
目标检测:目标检测任务要求同时完成对象的定位(即确定对象的边界框位置)和分类(即确定对象的类别)。这意味着目标检测算法必须不仅能够确定对象是否存在,还要知道它是什么。
目标检测通常用于识别和定位图像或视频帧中的对象,通常需要明确的目标类别信息。
目标跟踪:目标跟踪任务更关注对象在帧与帧之间的连续性,通常更注重对象的运动特征,而不要求进行目标的分类。
目标跟踪可以不涉及目标的类别,它的主要目标是维护对象的位置和轨迹,以实现在视频序列中的跟踪。

这里就有个问题,视频中不同时刻的同一个人,位置发生了变化,那么是如何关联上的呢?答案就是匈牙利算法和卡尔曼滤波。

  • 匈牙利算法可以告诉我们当前帧的某个目标,是否与前一帧的某个目标相同。
  • 卡尔曼滤波可以基于目标前一时刻的位置,来预测当前时刻的位置,并且可以比传感器(在目标跟踪中即目标检测器,比如Yolo等)更准确的估计目标的位置。

最经典的是DeepSORT,本篇记录的是如何使用IOU,所以了解下DeepSORT。

DeepSORT对每一帧的处理流程如下:

检测器得到bbox → 生成detections → 卡尔曼滤波预测→ 使用匈牙利算法将预测后的tracks和当前帧中的detecions进行匹配(级联匹配和IOU匹配) → 卡尔曼滤波更新

Frame 0:检测器检测到了3个detections,当前没有任何tracks,将这3个detections初始化为tracks
Frame 1:检测器又检测到了3个detections,对于Frame 0中的tracks,先进行预测得到新的tracks,然后使用匈牙利算法将新的tracks与detections进行匹配,得到(track, detection)匹配对,最后用每对中的detection更新对应的track

二、方法介绍

目前主流的目标跟踪算法都是基于Tracking-by-Detecton策略,即基于目标检测的结果来进行目标跟踪。

实现目标跟踪的方法:

1、IOU

比较前后两帧检测框IOU是否大于指定阈值,是则是同一个物体,不是则分配新ID,此方法对于运动慢的可以,效果差。

2、卡尔曼滤波

卡尔曼滤波是一种用于估计系统状态的优秀算法。它结合了传感器测量和系统模型,通过递归地计算加权平均值,实时更新状态估计。卡尔曼滤波在众多领域,如导航、机器人技术和信号处理中广泛应用,以提高系统的准确性和鲁棒性。

可以用的库:GitHub - adipandas/multi-object-tracker: Multi-object trackers in Python

3、botsort&bytetrack

BoT-SORT是今年非常游戏的跟踪器模型。就所有主要 MOT 指标MOTA、IDF1 和 HOTA而言,BoT-SORT 和 BoT-SORT-ReID 在 MOT17 和 MOT20 测试集的 MOTChallenge数据集中排名第一。对于 MOT17:实现了 80.5 MOTA、80.2 IDF1 和 65.0 HOTA,在跟踪器的排行榜上暂居第一。
论文翻译:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/126890651
论文链接:https://arxiv.org/pdf/2206.14651.pdf
代码:https://github.com/NirAharon/BOT-SORT
 

ByteTrack是基于tracking-by-detection范式的跟踪方法。大多数多目标跟踪方法通过关联分数高于阈值的检测框来获取目标ID。对于检测分数较低的目标,例如遮挡目标,会被简单的丢弃,这带来了不可忽略的问题,包括大量的漏检和碎片化轨迹。为了解决该问题,作者提出了一种简单、高效且通用的数据关联方法BYTE,通过关联每个检测框而不仅仅是高分检测框来进行跟踪。对于低分检测框,利用它们与轨迹的相似性来恢复真实目标并过滤掉背景检测。

BoT-SORT:https://github.com/NirAharon/BoT-SORT

ByteTrack :https://github.com/ifzhang/ByteTrack

三、IOU实现目标追踪

1、环境安装

本人的电脑使用的是CPU(无GPU)版本,所以直接安装,GPU需要安装CUDA等,自行安装。

# 使用Conda为本项目单独创建一个虚拟环境(python 3.8版本)
conda create -n yolov8_env python=3.8
# 激活进入环境
conda activate yolov8_env# YOLOv8安装方式
pip install ultralytics

2、验证

# 图片cli验证
yolo predict model=yolov8n.pt source=./bus.jpg# 视频cli验证
yolo predict model=yolov8n.pt source=./test.mp4

3、使用python验证

使用python语言验证主要是熟悉YOLOV8的API,知道如何调用,并测试。

from ultralytics import YOLO
import cv2
import numpy as np
import time# 加载模型
model = YOLO("./yolov8n.pt")  # load a pretrained model (recommended for training)
objs_labels = model.names  # get class labels
print(objs_labels)# 打开摄像头
cap = cv2.VideoCapture(0)while True:# 读取一帧start_time = time.time()ret, frame = cap.read()if ret:# 检测result = list(model(frame, stream=True))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器boxes = result.boxes  # Boxes object for bbox outputsboxes = boxes.cpu().numpy()  # convert to numpy array# 遍历每个框for box in boxes.data:l,t,r,b = box[:4].astype(np.int32) # left, top, right, bottomconf, id = box[4:] # confidence, class# 绘制框cv2.rectangle(frame, (l,t), (r,b), (0,0,255), 2)# 绘制类别+置信度(格式:98.1%)cv2.putText(frame, f"{objs_labels[id]} {conf*100:.1f}%", (l, t-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)end_time = time.time()fps = 1 / (end_time - start_time)# 绘制FPScv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)# 显示cv2.imshow("frame", frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:break

在终端里执行python demo.py

4、IOU实现追踪

'''
iou追踪示例
'''
from ultralytics import YOLO
import cv2
import numpy as np
import time
import random
import os
from shapely.geometry import Polygon, LineString
import jsonclass IouTracker:def __init__(self):# 加载检测模型self.detection_model = YOLO("./yolov8n.pt")  # 获取类别 self.objs_labels = self.detection_model.names # 打印类别print(self.objs_labels)# 只处理personself.track_classes = {0: 'person'}# 追踪的IOU阈值self.sigma_iou = 0.5# detection thresholdself.conf_thresh = 0.3def iou(sel,bbox1, bbox2):"""计算两个bounding box的IOU"""(x0_1, y0_1, x1_1, y1_1) = bbox1(x0_2, y0_2, x1_2, y1_2) = bbox2# 计算重叠的矩形的坐标overlap_x0 = max(x0_1, x0_2)overlap_y0 = max(y0_1, y0_2)overlap_x1 = min(x1_1, x1_2)overlap_y1 = min(y1_1, y1_2)# 检查是否有重叠if overlap_x1 - overlap_x0 <= 0 or overlap_y1 - overlap_y0 <= 0:return 0# 计算重叠矩形的面积以及两个矩形的面积size_1 = (x1_1 - x0_1) * (y1_1 - y0_1)size_2 = (x1_2 - x0_2) * (y1_2 - y0_2)size_intersection = (overlap_x1 - overlap_x0) * (overlap_y1 - overlap_y0)size_union = size_1 + size_2 - size_intersection# 计算IOUreturn size_intersection / size_uniondef predict(self, frame):'''检测'''result = list(self.detection_model(frame, stream=True, conf=self.conf_thresh))[0]  # inference,如果stream=False,返回的是一个列表,如果stream=True,返回的是一个生成器boxes = result.boxes  # Boxes object for bbox outputsboxes = boxes.cpu().numpy()  # convert to numpy arraydets = [] # 检测结果# 遍历每个框for box in boxes.data:l,t,r,b = box[:4] # left, top, right, bottomconf, class_id = box[4:] # confidence, class# 排除不需要追踪的类别if class_id not in self.track_classes:continuedets.append({'bbox': [l,t,r,b], 'score': conf, 'class_id': class_id })return detsdef main(self):'''主函数'''# 读取视频cap = cv2.VideoCapture("./media/video.mp4")# 获取视频帧率、宽、高fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))print(f"fps: {fps}, width: {width}, height: {height}")tracks_active = [] # 活跃的跟踪器frame_id = 1 # 帧IDtrack_idx = 1 # 跟踪器ID# writerout = cv2.VideoWriter("./test_out.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (1280, 720))while True:# 读取一帧start_time = time.time()ret, raw_frame = cap.read()if ret:# 检测frame = cv2.resize(raw_frame, (1280, 720))raw_frame = framedets = self.predict(raw_frame)# 更新后的跟踪器updated_tracks = [] # 遍历活跃的跟踪器for track in tracks_active:if len(dets) > 0:# 根据最大IOU更新跟踪器,先去explain.ipynb中看一下MAX用法best_match = max(dets, key=lambda x: self.iou(track['bboxes'][-1], x['bbox'])) # 找出dets中与当前跟踪器(track['bboxes'][-1])最匹配的检测框(IOU最大)# 如果最大IOU大于阈值,则将本次检测结果加入跟踪器if self.iou(track['bboxes'][-1], best_match['bbox']) > self.sigma_iou:# 将本次检测结果加入跟踪器track['bboxes'].append(best_match['bbox'])track['max_score'] = max(track['max_score'], best_match['score'])track['frame_ids'].append(frame_id)# 更新跟踪器updated_tracks.append(track)# 删除已经匹配的检测框,避免后续重复匹配以及新建跟踪器del dets[dets.index(best_match)]# 如有未分配的目标,创建新的跟踪器new_tracks = []for det in dets: # 未分配的目标,已经分配的目标已经从dets中删除new_track = {'bboxes': [det['bbox']], # 跟踪目标的矩形框'max_score': det['score'], # 跟踪目标的最大score'start_frame': frame_id,  # 目标出现的 帧id'frame_ids': [frame_id],  # 目标出现的所有帧id'track_id': track_idx,    # 跟踪标号'class_id': det['class_id'], # 类别'is_counted': False       # 是否已经计数}track_idx += 1new_tracks.append(new_track)# 最终的跟踪器tracks_active = updated_tracks + new_trackscross_line_color = (0,255,0) # 越界线的颜色# 绘制跟踪器for tracker in tracks_active:# 绘制跟踪器的矩形框l,t,r,b = tracker['bboxes'][-1]# 取整l,t,r,b = int(l), int(t), int(r), int(b)class_id = tracker['class_id']cv2.rectangle(raw_frame, (l,t), (r,b), cross_line_color, 2)# 绘制跟踪器的track_id + class_name + score(99.2%格式)cv2.putText(raw_frame, f"{tracker['track_id']}", (l, t-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,0), 2)# 设置半透明color = (0,0,0)alpha = 0.2l,t = 0,0r,b = l+240,t+40raw_frame[t:b,l:r,0] = raw_frame[t:b,l:r,0] * alpha + color[0] * (1-alpha)raw_frame[t:b,l:r,1] = raw_frame[t:b,l:r,1] * alpha + color[1] * (1-alpha)raw_frame[t:b,l:r,2] = raw_frame[t:b,l:r,2] * alpha + color[2] * (1-alpha)# end timeend_time = time.time()# FPSfps = 1 / (end_time - start_time)# 绘制FPScv2.putText(raw_frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)# 显示cv2.imshow("frame", raw_frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakout.write(raw_frame)else:breakout.release()  # 实例化
iou_tracker = IouTracker()
# 运行
iou_tracker.main()

测试效果,视频是马路上的,如果想要效果好,建议自己训练模型,使用的是yolov8n.pt模型

如有侵权,或需要完整代码,请及时联系博主。

这篇关于AI项目十九:YOLOV8实现目标追踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/532746

相关文章

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

SpringBoot项目使用MDC给日志增加唯一标识的实现步骤

《SpringBoot项目使用MDC给日志增加唯一标识的实现步骤》本文介绍了如何在SpringBoot项目中使用MDC(MappedDiagnosticContext)为日志增加唯一标识,以便于日... 目录【Java】SpringBoot项目使用MDC给日志增加唯一标识,方便日志追踪1.日志效果2.实现步

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法

《SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法》本文主要介绍了SpringBoot项目启动错误:找不到或无法加载主类的几种解决方法,具有一定的参考价值,感兴趣的可以了解一下... 目录方法1:更改IDE配置方法2:在Eclipse中清理项目方法3:使用Maven命令行在开发Sprin

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co