YOLOv8改进 | 主干篇 | 利用SENetV1改进网络结构 (ILSVRC冠军得主)

2023-12-24 09:04

本文主要是介绍YOLOv8改进 | 主干篇 | 利用SENetV1改进网络结构 (ILSVRC冠军得主),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的改进机制是SENet(Squeeze-and-Excitation Networks)其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型,而是一个可以和现有的任何一个模型相结合的模块(可以看作是一种通道型的注意力机制)。在SENet中,所谓的挤压和激励(Squeeze-and-Excitation)操作是作为一个单元添加到传统的卷积网络结构中,如残差单元中(后面我会把修改好的残差单元给大家大家直接复制粘贴即可使用)。这样可以增强模型对通道间关系的捕获,提升整体的特征表达能力,而不需要从头开始设计一个全新的网络架构。因此,SENet可以看作是对现有网络模型的一种改进和增强(亲测大中小三中目标检测上都有一定程度的涨点效果)。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

后面我会将这个机制SENetV1和SENetV2添加到多个网络结构中进行融合涨点,可能也会和检测头融合,将模型发布给大家使用。

二、SENetV1框架原理

论文地址:官方论文地址

代码地址:官方代码地址


SENet(Squeeze-and-Excitation Networks)的主要思想在于通过挤压-激励(SE)块强化了网络对通道间依赖性的建模。这一创新的核心在于自适应地重新校准每个通道的特征响应,显著提升了网络对特征的表示能力。SE块的叠加构成了SENet架构,有效提高了模型在不同数据集上的泛化性。SENet的创新点包括其独特的结构设计,它在增加极少计算成本的情况下,为现有CNN模型带来了显著的性能提升,并在国际图像识别竞赛ILSVRC 2017中取得了突破性的成果

上图展示了一个挤压-激励(Squeeze-and-Excitation, SE)块的结构。输入特征图 X 经过一个变换 F_{tr}后产生特征图 U。然后,特征图U被压缩成一个全局描述子,这是通过全局平均池化 F_{sq}实现的,产生一个通道描述子。这个描述子经过两个全连接层 F_{ex},第一个是降维,第二个是升维,并通过激活函数如ReLU和Sigmoid激活。最后,原始特征图 U与学习到的通道权重 F_{scale}相乘,得到重新校准的特征图 hat{X}。这种结构有助于网络通过学习通道间的依赖性,自适应地强化或抑制某些特征通道。 

上面的图片展示了两种神经网络模块的结构图:Inception模块和残差(ResNet)模块。每个模块都有其标准形式和一个修改形式,对比图融入了Squeeze-and-Excitation (SE)块来提升性能。

左面的部分是原始Inception模块(左)和SE-Inception模块(右)。SE-Inception模块通过全局平均池化和两个全连接层(第一个使用ReLU激活函数,第二个使用Sigmoid函数)来生成通道级权重,然后对输入特征图进行缩放。

右面的部分展示了原始残差模块(左)和SE-ResNet模块(右)。SE-ResNet模块在传统的残差连接之后添加了SE块,同样使用全局平均池化和全连接层来获得通道级权重,并对残差模块的输出进行缩放。

这两个修改版模块都旨在增强网络对特征的重要性评估能力,从而提升整体模型的性能。


三、SENetV1核心代码

下面的代码是MSDA的核心代码,我们将其复制导'ultralytics/nn/modules'目录下,在其中创建一个文件,我这里起名为Dilation然后粘贴进去,其余使用方式看章节四。

import torch
from torch import nn
from .conv import Conv
class SELayerV1(nn.Module):def __init__(self, channel, reduction=16):super(SELayerV1, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.SE = SELayerV1(c2)self.add = shortcut and c1 == c2def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.SE(self.cv2(self.cv1(x))) if self.add else self.SE(self.cv2(self.cv1(x)))class C2f_SENetV1(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))


四、手把手教你添加SENetV1模块

4.1 SENetV1添加步骤

4.1.1 步骤一

首先我们找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个py文件,名字为你也可以根据你自己的习惯起即可,然后将核心代码复制进去。

4.1.2 步骤二

之后我们找到'ultralytics/nn/tasks.py'文件,在其中注册我们的模块。

首先我们需要在文件的开头导入我们的模块,如下图所示->

4.1.3 步骤三

我们找到parse_model这个方法,可以用搜索也可以自己手动找,大概在六百多行吧。 我们找到如下的地方,然后将模块按照我的方法添加进去即可,模仿我添加即可,其中另外的模块,你没有删除即可,添加红框的内容即可。

到此我们就注册成功了,可以修改yaml文件使用我们添加的模块了。


4.2 SENetV1的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 SENetV1的yaml版本一(推荐)

下面的版本我在大中小三个检测层的输出部分添加了SENetV1(实验版本也是我根据这个yaml文件跑出来的),大家可以根据自己的需求,减少SENetV1比如你做的小目标检测,那么可以把另外两个去去掉,但是别忘了修改检测通道数,要不然会报错。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, SELayerV2, []]  # 16- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)- [-1, 1, SELayerV2, []]  # 20- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 23 (P5/32-large)- [-1, 1, SELayerV2, []]  # 24- [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)


4.2.2 SENetV1的yaml版本二

这个版本我没试过结果,我只跑了一下能够运行和跑通,结果 还是需要大家自己来使用尝试一下。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_SENetV1, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_SENetV1, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_SENetV1, [1024]]  # 21 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 推荐SENetV1可添加的位置 

SENetV1是一种即插即用的可替换卷积的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入SENetV1

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加SENetV1可以帮助模型更有效地融合不同层次的特征。

  3. 能添加的位置很多,一篇文章很难全部介绍到,后期我会发文件里面集成上百种的改进机制,然后还有许多融合模块,给大家。


4.4 SENetV1的训练过程截图 

下面是添加了SENetV1的训练截图。

大家可以看下面的运行结果和添加的位置所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

​​

这篇关于YOLOv8改进 | 主干篇 | 利用SENetV1改进网络结构 (ILSVRC冠军得主)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/531276

相关文章

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

YOLOv8改进 | Conv篇 | YOLOv8引入DWR

1. DWR介绍 1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积

yolov8 pt转onnx

第一步: 安装onnx pip install --upgrade onnx 第二步: 将以下代码创建、拷贝到yolov8根目录下。具体代码test.py: from ultralytics import YOLO# Load a modelmodel = YOLO('yolov8n.pt') # load an official model# Export the model

目标检测-YOLOv8

YOLOv8 YOLOv8 是 YOLO 系列的最新版本,它在 YOLOv7 的基础上进行了多项改进,主要侧重于进一步提升推理速度、检测精度以及模型的通用性。与之前版本相比,YOLOv8 引入了新的技术和优化策略,使其在多个方面更具优势。 相比 YOLOv7 的改进与优势 更加轻量化的网络架构 YOLOv8 进一步简化了网络结构,引入了新型的 EfficientRep 主干网络,在保证性能

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使

爆改YOLOv8|利用yolov10的SCDown改进yolov8-下采样

1, 本文介绍 YOLOv10 的 SCDown 方法来优化 YOLOv8 的下采样过程。SCDown 通过点卷积调整通道维度,再通过深度卷积进行空间下采样,从而减少了计算成本和参数数量。这种方法不仅降低了延迟,还在保持下采样过程信息的同时提供了竞争性的性能。 关于SCDown 的详细介绍可以看论文:https://arxiv.org/pdf/2405.14458 本文将讲解如何将SCDow

matter中的Fabric(网络结构)

什么是Fabric? Fabric可以被理解为一组相互信任的设备和控制器,它们共享一个共同的信任域。这意味着在同一个Fabric中的设备和控制器之间可以进行安全的通信,而无需额外的身份验证或安全检查。每个Fabric有一个唯一的标识,确保Fabric之间是隔离的,防止权限混乱。一个Matter Fabric就是一个Matter网络,一个Matter Fabric中的所有节点共享同一个根证书,所以