HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split

本文主要是介绍HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 架构原理

1)StoreFile

保存实际数据的物理文件,StoreFile以HFile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。

2)MemStore

写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。

3)WAL

由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Aheadlogfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

2. 写流程

写流程:

1)Client先访问zookeeper,获取hbase:meta表位于哪个RegionServer。

2)访问对应的RegionServer,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个RegionServer中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的metacache,方便下次访问。

3)与目标RegionServer进行通讯;

4)将数据顺序写入(追加)到WAL;

5)将数据写入对应的MemStore,数据会在MemStore进行排序;

6)向客户端发送ack;

7)等达到MemStore的刷写时机后,将数据刷写到HFile。

3. MemStoreFlush

MemStore刷写时机(要记住开始往memstore和停止mestore刷写的时机。):

  1. 单个Store来看 memstroe 的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。当memstore的大小达到了hbase.hregion.memstore.flush.size(默认值128M)* hbase.hregion.memstore.block.multiplier(默认值4)时,会阻止继续往该memstore写数据。

  2. 从regionerServer中来看regionserver中memstore的总大小达到java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)*hbase.regionserver.global.memstore.size.lower.limit(默认值0.95),region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到regionserver中所有memstore的总大小减小到上述值以下。当 regionserver 中 memstore 的总大小达到 java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)时,会阻止继续往所有的memstore写数据。

  3. 到达自动刷写的时间,也会触发memstoreflush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)。

  4. 当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进 行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下(该属性名已经废弃, 现无需手动设置,最大值为 32)。

4. 读流程

读流程 :发送Get请求,磁盘和内存一起读,为了加速磁盘的读速度,加了一个Block Cache

1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。

2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey, 查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以 及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。

3)与目标 Region Server 进行通讯;

4)分别在 Block Cache(读缓存),MemStore 和 Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。

5) 将从文件中查询到的数据块(Block,HFile 数据存储单元,默认大小为 64KB)缓存到 Block Cache。

6)将合并后的最终结果返回给客户端。

5. StoreFile Compaction

由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp) 和不同类型(Put/Delete)有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile。

为了减少 HFile 的个数,以及清理掉过期和删除的数据,会进行 StoreFile Compaction。 Compaction 分为两种,分别是 Minor Compaction 和 Major Compaction。Minor Compaction 会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据。 Major Compaction 会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期 和删除的数据。

6. Region Split

默认情况下,每个Table 起初只有一个 Region,随着数据的不断写入,Region 会自动进行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑, HMaster 有可能会将某个 Region 转移给其他的 Region Server。

Region Split 时机:

1.当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize, 该 Region 就会进行拆分(0.94 版本之前)。

2.当 1 个 region 中 的 某 个 Store 下所有 StoreFile 的 总 大 小 超 过 Min(R^2 * "hbase.hregion.memstore.flush.size",hbase.hregion.max.filesize"),该 Region 就会进行拆分,其 中 R 为当前 Region Server 中属于该 Table 的个数(0.94 版本之后)。

这篇关于HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529603

相关文章

MySQL游标和触发器的操作流程

《MySQL游标和触发器的操作流程》本文介绍了MySQL中的游标和触发器的使用方法,游标可以对查询结果集进行逐行处理,而触发器则可以在数据表发生更改时自动执行预定义的操作,感兴趣的朋友跟随小编一起看看... 目录游标游标的操作流程1. 定义游标2.打开游标3.利用游标检索数据4.关闭游标例题触发器触发器的基

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南

《在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南》在SpringBoot和MyBatis项目中实现MySQL读写分离,主要有两种思路:一种是在应用层通过代码和配置手动控制... 目录如何选择实现方案核心实现:应用层手动分离实施中的关键问题与解决方案总结在Spring Boot和

CPython与PyPy解释器架构的性能测试结果对比

《CPython与PyPy解释器架构的性能测试结果对比》Python解释器的选择对应用程序性能有着决定性影响,CPython以其稳定性和丰富的生态系统著称;而PyPy作为基于JIT(即时编译)技术的替... 目录引言python解释器架构概述CPython架构解析PyPy架构解析架构对比可视化性能基准测试测

在DataGrip中操作MySQL完整流程步骤(从登录到数据查询)

《在DataGrip中操作MySQL完整流程步骤(从登录到数据查询)》DataGrip是JetBrains公司出品的一款现代化数据库管理工具,支持多种数据库系统,包括MySQL,:本文主要介绍在D... 目录前言一、登录 mysql 服务器1.1 打开 DataGrip 并添加数据源1.2 配置 MySQL

MySQL数据库读写分离与负载均衡的实现逻辑

《MySQL数据库读写分离与负载均衡的实现逻辑》读写分离与负载均衡是数据库优化的关键策略,读写分离的核心是将数据库的读操作与写操作分离,本文给大家介绍MySQL数据库读写分离与负载均衡的实现方式,感兴... 目录读写分离与负载均衡的核心概念与目的读写分离的必要性与实现逻辑读写分离的实现方式及优缺点读负载均衡

MySQL集群高可用架构的两种使用小结

《MySQL集群高可用架构的两种使用小结》本文介绍了MySQL的两种高可用解决方案:组复制(MGR)和MasterHighAvailability(MHA),文中通过示例代码介绍的非常详细,对大家的学... 目录一、mysql高可用之组复制(MGR)1.1 组复制核心特性与优势1.2 组复制架构原理1.3

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1