算数平均数、调和平均数、几何平均数的计算方法与应用场合

2023-12-23 18:44

本文主要是介绍算数平均数、调和平均数、几何平均数的计算方法与应用场合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 定义

1、算数平均数:又称均值,是统计学中最基本,最常用的一种平均指标,分为简单算术平均数、加权算术平均数。

2、调和平均数:又称倒数平均数,是总体各统计变量倒数的算数平均数的倒数。分为数学调和平均数(数值倒数的平均数的倒数)和统计调和平均数(计算结果与加权算术平均数完全相等)。

3、几何平均数:几何平均数是对各变量值的连乘积开项数次方根。根据所拿掌握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。

 计算方法
1、算数平均数:

设一组数据为X1,X2,...,Xn,简单地算术平均数的计算公式为:

  M=\frac{x_{1}+x_{2}+x_{3}+\cdots + x_{n}}{n}

加权算术平均:主要用于处理经分组整理数据。

设原始数据被分成K组,各组的组中值为X1,X2,...Xk,各组的频数分别为f1,f2,...fk,加权算术平均数的计算公式为:

M=\frac{x_{1} \times f_{1} +x_{2} \times f_{2} +x_{3} \times f_{3} +\cdots + x_{n} \times f_{k} }{ f_{1} + f_{2} + f_{3} +\cdots + f_{k} }

2、调和平均数:

简单调和平均数是算术平均数的变形。

H_{n}= \frac{1}{ \frac{1}{n}{} \sum_{i=1}^{n} \frac{1}{ x_{i}}} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}} }

加权调和平均数:

H_{n}= \frac{1}{ \frac{1}{m_{1}+m_{2}+...+m_{n}}( \frac{1}{x_{1}} + \frac{2}{x_{2}}+ ... + \frac{n}{x_{n}}))} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}}

例如:某工厂购进材料三批,每批价格及采购金额资料如下表:

价格(元/千克)(x)采购金额(元)(m)采购数量(千克)(m/x)
第一批3510000286
第二批4020000500
第三批4515000330
合计-450001116

H_{n} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}} = \frac{45000}{1116} = 40.32

3、几何平均数:

简单几何平均数:

G = \sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}}

加权几何平均数:

G_{n} = \sum_{i=1}^{n} f_{i} \sqrt{ \prod_{i=1}^{n} x_{i}^{f_{i}} }

 应用场合

1、算数平均数:适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

简单算术平均数适用于未分组的原始数据。加权平均数用于分组的数据。

2、调和平均数:可以用于计算平均速度,例:计算4x100米接力赛中,运动员的总体速度。

3、几何平均数:

1、对比率、指数等进行平均;

2、计算平均发展速度;

3、复利下的平均年利率;

4、连续作业的车间产品的平均合格率;

计算总水平、总成果等所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数。

 特点
算术平均值是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小抽样变化的影响等特点。但是极易受极端数据的影响,每个数据的或大或小的变化都会影响最终结果。

调和平均数具有以下几个主要特点:

1、调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。

2、只要有一个标志值为0,就不能计算调和平均数。

3、当组距数列有开口组时,其组中值即使按照相邻组距计算,假定性也很大。

4、调和平均数应用的范围较小。

三者的关系:

调和平均数 ≤ 几何平均数 ≤ 算术平均数 ≤ 平方平均数

摘自:

算数平均数、调和平均数、几何平均数的计算方法与应用场合 - 知乎 (zhihu.com)

这篇关于算数平均数、调和平均数、几何平均数的计算方法与应用场合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529065

相关文章

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2