MNN框架学习(四):tensorflow图像分类模型部署

2023-12-23 10:48

本文主要是介绍MNN框架学习(四):tensorflow图像分类模型部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.模型转换

先下载tensorflow的模型,下载地址为:

https://github.com/tensorflow/models/tree/master/research/slim

然后,使用编译好的MNN工具转换模型:

./MNNConvert -f TF --modelFile mobilenet_v1_1.0_224_frozen.pb --MNNModel mobilenet.mnn --bizCode MNN

2、模型部署

主要分为两个步骤:

第一步,初始化步骤,包括读取模型创建解释器,配置调度参数、配置后端参数和创建会话

int Classifier::Init(const char* root_path) {std::cout << "start Init." << std::endl;std::string model_file = std::string(root_path) + "/mobilenet.mnn";// 创建解释器classifier_interpreter_ = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_file.c_str()));if (!classifier_interpreter_ || LoadLabels(root_path) != 0) {std::cout << "load model failed." << std::endl;return 10000;}    // 配置调度MNN::ScheduleConfig schedule_config;schedule_config.type = MNN_FORWARD_CPU;schedule_config.numThread = 1;// 配置后端MNN::BackendConfig backend_config;backend_config.precision = MNN::BackendConfig::Precision_Normal;schedule_config.backendConfig = &backend_config;// 创建会话classifier_sess_ = classifier_interpreter_->createSession(schedule_config);input_tensor_ = classifier_interpreter_->getSessionInput(classifier_sess_, nullptr);classifier_interpreter_->resizeTensor(input_tensor_, {1, 3, inputSize_.height, inputSize_.width});classifier_interpreter_->resizeSession(classifier_sess_);std::cout << "End Init." << std::endl; initialized_ = true;return 0;
}

第二步:数据读入、模型推理和后处理输出

int Classifier::Classify(const cv::Mat& img_src, std::vector<ImageInfo>* images) {std::cout << "start classify." << std::endl;images->clear();if (!initialized_) {std::cout << "model uninitialized." << std::endl;return 10000;}if (img_src.empty()) {std::cout << "input empty." << std::endl;return 10001;}cv::Mat img_resized;cv::resize(img_src.clone(), img_resized, inputSize_);std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(MNN::CV::BGR, MNN::CV::RGB, meanVals, 3, normVals, 3));pretreat->convert((uint8_t*)img_resized.data, inputSize_.width, inputSize_.height, img_resized.step[0], input_tensor_);// forwardclassifier_interpreter_->runSession(classifier_sess_);// get output// mobilenet: "classifierV1/Predictions/Reshape_1"MNN::Tensor* output_score = classifier_interpreter_->getSessionOutput(classifier_sess_, nullptr);// copy to hostMNN::Tensor score_host(output_score, output_score->getDimensionType());output_score->copyToHostTensor(&score_host);auto score_ptr = score_host.host<float>();std::vector<std::pair<float, int>> scores;for (int i = 0; i < 1000; ++i) {float score = score_ptr[i];scores.push_back(std::make_pair(score, i));}std::partial_sort(scores.begin(), scores.begin() + topk_, scores.end(), std::greater< std::pair<float, int> >());for (int i = 0; i < topk_; ++i) {ImageInfo image_info;image_info.label_ = labels_[scores[i].second];image_info.score_ = scores[i].first;images->push_back(image_info);}std::cout << "end classify." << std::endl;return 0;
}

具体代码已经上传到github:https://github.com/MirrorYuChen/mnn_example/tree/master/src/classifier

大家觉得有用就给个star,不许白嫖哦~

参考资料:

[1] https://github.com/alibaba/MNN

[2] https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/MNN

 

这篇关于MNN框架学习(四):tensorflow图像分类模型部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527759

相关文章

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Docker + Redis 部署集群的实现步骤

《Docker+Redis部署集群的实现步骤》本文详细介绍了在三台服务器上部署高可用Redis集群的完整流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、环境准备1. 服务器规划(3 台服务器)2. 防火墙配置(三台服务器均执行)3. 安装 docke

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF