本文主要是介绍后退的欧拉方法_Euler-Maruyama discretization(欧拉-丸山数值解法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
欧拉法的来源
在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解。它是一种解决常微分方程数值积分的最基本的一类显型方法(Explicit method)。
[编辑]
什么是欧拉法
欧拉法是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。——流场法
它不直接追究质点的运动过程,而是以充满运动液体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。将个别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间中的每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个流体的运动情况。
常微分方程的数值解法的一种。基本思想是迭代。其中分为前进的EULER法、后退的EULER 法、改进的EULER法。所谓迭代,就是逐次替代,最后求出所要求的解,并达到一定的精度。误差可以很容易的计算出来。
[编辑]
欧拉算法
微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值,这个过程称为离散化。实现离散化的基本途径是用向前差商来近似代替导数,这就是欧拉算法实现的依据。欧拉(Euler)算法是数值求解中最基本、最简单的方法,但其求解精度较低,一般不在工程中单独进行运算。所谓数值求解,就是求问题的解y(x)在一系列点上的值y(xi)的近似值yi。对于常微分方程:
这篇关于后退的欧拉方法_Euler-Maruyama discretization(欧拉-丸山数值解法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!