大模型要占你多少内存?这个神器一键测量,误差低至0.5MB,免费可用

2023-12-23 03:20

本文主要是介绍大模型要占你多少内存?这个神器一键测量,误差低至0.5MB,免费可用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

明敏 发自 凹非寺
量子位 | 公众号 QbitAI

大模型训练推理要用多少内存?

打开这个网页一测便知,测量误差小至0.5MB。

88959794fdad08d727d3f43345115ed6.gif

比如模型bert-base-case Int8估计占用413.18 MB内存,实际占用为413.68MB相差0.5MB,误差仅有0.1%

5afe3493cae54f66961805959a1f1b77.png

操作也很简单,输入模型名称,选择数据类型即可。

4ad5f12421d98c10db5891719bfedf21.gif

这就是HuggingFace Space上的最新火起来‍工具——Model Memory Calculator,模型内存测量器,在网页端人人可体验。

要知道,跑大模型最头疼的问题莫过于:GPU内存够吗?

现在能先预估一波、误差很小,让不少人大呼“Great”!

c6aecd3544c393f94866a9d6d2109d05.png

实际推理内存建议多加20%

使用第一步,需要输入模型的名称。

目前支持搜索在HuggingFace Transformers库和TIMM库中的模型。

比如想要看GLM-6B的情况,可以输入“THUDM/chatglm-6b”。

a8b2d02ab5a6b850cda1892dcf947827.png

不过有一些模型会存在限制,需要获取API token后才能开始计算,比如Llama-2-7b。

df4e4df32e1688d0948b7577d67c9be4.png

我们找了几个大模型实测,可以看到当模型规模达到百亿参数后,内存要求被直线拉高。

b02beb6ab0ec6ff4be55c4b91c2c232d.png

基础版的BERT还是对GPU相当友好滴55afc515fe2f3134fd0a46012e39c11d.png

dfdb84475c49f157d28337731c17b6a3.png

而在实际推理过程,EleutherAI发现需要在预测数据基础上,预留20%的内存。具体举例如下:

3c25d4e2d290e7bdef9c3645537d35aa.png

作者小哥热衷开源项目

最后来介绍一下带来这个项目的小哥Zach Mueller

他本科毕业于西佛罗里达大学,主修软件设计与开发,热衷开源,在GitHub有1k粉丝。之前做过很多和Fast.ai框架有关的开源项目。

c33242cd69ccc86d29fc16f68f6caa33.png

传送门:
https://huggingface.co/spaces/hf-accelerate/model-memory-usage

「AIGC+垂直领域社群」

招募中!

欢迎关注AIGC的伙伴们加入AIGC+垂直领域社群,一起学习、探索、创新AIGC!

请备注您想加入的垂直领域「教育」或「广告营销」,加入AIGC人才社群请备注「人才」&「姓名-公司-职位」。

af83c1bcec7d91b059467c786140a5f6.png

点这里👇关注我,记得标星哦~

这篇关于大模型要占你多少内存?这个神器一键测量,误差低至0.5MB,免费可用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526530

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU