[FCN] Fully Convolutional Networks

2023-12-23 00:32

本文主要是介绍[FCN] Fully Convolutional Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、贡献

    1)首次将全卷积网络用于pixel-wise预测(通过upsampling)

    2)进行有监督的预训练

    3)end-to-end,无须pre和post-processing

2、网络结构

    1)upsampling

        - deconvolution

        - 减小输出的dimension

    2)skip connection

        - global包含语义特征,local包含具体的位置信息

这篇关于[FCN] Fully Convolutional Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526071

相关文章

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

Complex Networks Package for MatLab

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html 翻译: 复杂网络的MATLAB工具包提供了一个高效、可扩展的框架,用于在MATLAB上的网络研究。 可以帮助描述经验网络的成千上万的节点,生成人工网络,运行鲁棒性实验,测试网络在不同的攻击下的可靠性,模拟任意复杂的传染病的传

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

【机器学习】生成对抗网络(Generative Adversarial Networks, GANs)详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 生成对抗网络(Generative Adversarial Networks, GANs)详解GANs的基本原理GANs的训练过程GANs的发展历程GANs在实际任务中的应用小结 生成对

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples 创新点 1.旋转解决误分类 总结 可以说简单粗暴有效

Segmentation简记2-RESIDUAL PYRAMID FCN FOR ROBUST FOLLICLE SEGMENTATION

创新点 与resnet结合,五层/level的分割由此带来的梯度更新问题,设计了两种方案。 总结 有点意思。看图吧,很明了。 细节图: 全流程图: 实验 Res-Seg-Net-horz: 在UNet上堆叠5个细节图中的结构,没有上采样层。 Res-Seg-Net-non-fixed: 普通方式的更新 Res-Seg-Net-fixed: 每一层的更新,只依据距离它最近的一

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

FUSEE: A Fully Memory-Disaggregated Key-Value Store——论文阅读

FAST 2023 Paper 论文阅读笔记整理 问题 分布式内存键值(KV)存储正在采用分离式内存(DM)体系结构以提高资源利用率。然而,现有的DM上的KV存储采用半分离式设计,在DM上存储KV对,但在单个元数据服务器上管理元数据,因此仍然在元数据服务器上遭受低资源效率的问题。 如图1a,Clover[60]采用半分离式设计,在计算节点(CN)上部署客户端,在内存节点(MN)上存储KV对,