数据可视化---离群值展示

2023-12-22 22:15
文章标签 数据 可视化 展示 离群

本文主要是介绍数据可视化---离群值展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容导航

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_line(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]# #不同着色,正常绿色,离群值红色# sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.plot(data.index,data.values,'bo--',alpha=0.4)plt.scatter(error.index,error.values,c='r',s=60)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))# 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.legend(loc='best')plt.show()fig.savefig('Outlier_visualization_line.png',dpi=600)data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)

在这里插入图片描述

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_scatter(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]#不同着色,正常绿色,离群值红色sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.scatter(data.index,data.values,marker='o',c=sp)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max(),r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.show()fig.savefig('Outlier_visualization_scatter.png',dpi=600)data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

在这里插入图片描述

友情提示如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言哦!!!

这篇关于数据可视化---离群值展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525650

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编