数据可视化---离群值展示

2023-12-22 22:15
文章标签 数据 可视化 展示 离群

本文主要是介绍数据可视化---离群值展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容导航

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_line(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]# #不同着色,正常绿色,离群值红色# sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.plot(data.index,data.values,'bo--',alpha=0.4)plt.scatter(error.index,error.values,c='r',s=60)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))# 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.legend(loc='best')plt.show()fig.savefig('Outlier_visualization_line.png',dpi=600)data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)

在这里插入图片描述

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as pltdef Outlier_visualization_scatter(data,threshold):plt.style.use('ggplot')data = pd.Series(data)mean = data.mean()std  = data.std()#筛选出离群值left  = mean - threshold * stdright = mean + threshold * stderror = data[(data<left)|(data>right)]data_c = data[(data>=left)&(data<=right)]#不同着色,正常绿色,离群值红色sp = np.where(data.isin(data_c),'g','r') # 可视化fig = plt.figure(figsize=(12,8))plt.scatter(data.index,data.values,marker='o',c=sp)plt.title('Outlier Visualization',size=20)plt.text(len(data)*0.4,data.values.max(),r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))plt.xlabel('Index',size=18)plt.ylabel('Value',size=18)plt.grid(True)plt.show()fig.savefig('Outlier_visualization_scatter.png',dpi=600)data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

在这里插入图片描述

友情提示如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言哦!!!

这篇关于数据可视化---离群值展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525650

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE