09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

2023-12-22 15:52

本文主要是介绍09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

参考:

论文地址:https://proceedings.mlr.press/v48/wangf16.pdf

LunarLander复现:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

0、实践背景

gym的LunarLander是一个用于强化学习的经典环境。在这个环境中,智能体(agent)需要控制一个航天器在月球表面上着陆。航天器的动作包括向上推进、不进行任何操作、向左推进或向右推进。环境的状态包括航天器的位置、速度、方向、是否接触到地面或月球上空等。

智能体的任务是在一定的时间内通过选择正确的动作使航天器安全着陆,并且尽可能地消耗较少的燃料。如果航天器着陆时速度过快或者与地面碰撞,任务就会失败。智能体需要通过不断地尝试和学习来选择最优的动作序列,以完成这个任务。

下面是训练的结果:
在这里插入图片描述

2、Dueling DQN实现原理

2.1 Dueling DQN基本知识

Dueling Deep Q Network(Dueling DQN)是对DQN算法的改进,有效提升了算法的性能。如果对DQN还不了解的话可以先参考:07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

简单回顾一下DQN的基本知识,DQN的输出依赖于Q网络,其输出实际上是动作价值函数,该函数的维度等于动作空间的维度,就是你能执行的动作的数量。例如,动作价值函数的输出是[0.1,0.2,0.3],我可以执行的动作是【上、左、右】,那么显而易见,执行右动作所获得的动作价值最高,那么我们所执行的动作应该是(如果贪心策略的话)。

Dueling DQN是在DQN的基础上进行改进,其输出包含两个部分,分别是状态价值和动作优势。
显然,状态价值用于衡量当前状态的优劣,其实际上是一个数(标量),而动作优势函数的维度等于动作空间的维度,代表执行每个动作能带来多大的相对优势

动作优势函数的和为0,因此其实际上是一个相对值,表示某个动作相对其均值(所有动作价值的均值)能够带来多大的优势。

DQN和Dueling DQN的网络结构如下所示,可以看到Dueling DQN输出包含两个部分,将动作优势和其状态价值求和就是原来的动作价值函数Q(动作价值函数Q就是经典DQN的输出)。

更深入一点,状态价值函数V实际上就是动作价值函数Q的期望,也可以简单理解为状态价值函数是Q的均值: V π ( s t ) = E [ Q π ( s t , A ) ] V_{\pi}(s_{t})=E\left[Q_{\pi}(s_{t},A)\right] Vπ(st)=E[Qπ(st,A)]。由此,Dueling DQN实际上是把输出拆成了两部分,一部分是Q的均值mean(Q),一部分是Q-mean(Q)的部分,两部分的和就是Q函数,与DQN一致。
在这里插入图片描述

2.2 Dueling DQN能够带来性能提升的简单直觉

将原来的动作价值函数Q,拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q)有什么好处呢?在此举例:

存在一种情况,无论你采取任何动作,对结果的影响可能都并不关键。

例如,朱元璋开局一个碗,到发家致富建立大明,必然是发奋刻苦,抓住实际,因此,他的每一个动作的选择都至关重要,会对他的未来造成很大的影响。再例如,我开局10个亿,我每天吃吃喝喝,干啥都能享受生活,反正那么多米一辈子也用不完嘞。这种情况下,我采取什么动作已经不是很重要了,毕竟开局就在罗马。

因此,将原来的动作价值函数拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q),是合理的,可以分辨当前的动作优势是自身动作带来的还是当前环境带来的,这样各司其职,效果也会更好。

关于“分辨当前的动作优势是自身动作带来的还是当前环境带来的”,还有一个方便读者理解的例子,例如我一届书生,进京赶考,考取功名当官了,那这种情况我获得的奖励大概来自自身的动作;但是如果我是宰相的儿子,也当官了,可能当前环境(我的爸爸是宰相)所造成的优势会更大一点。

3 Dueling DQN的代码实现

基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)已经给出了DQN的全部实现代码,Dueling DQN只是在网络构建上有所不同。Dueling DQN的网络构建代码如下所示:

def GenModelDuelingDQN(num_actions, input_dims, fc1, fc2, fc3):# define inputinput_node = tf.keras.Input(shape=input_dims)input_layer = input_node# define state value function(计算状态价值函数)state_value = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)state_value = tf.keras.layers.Dense(1, activation='linear')(state_value)# state value and action value need to have the same shape for adding# 这里是进行统一维度的state_value = tf.keras.layers.Lambda(lambda s: tf.keras.backend.expand_dims(s[:, 0], axis=-1),output_shape=(input_dims,))(state_value)# define acion advantage (行为优势)action_advantage = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)action_advantage = tf.keras.layers.Dense(fc2, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(fc3, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(num_actions, activation='linear')(action_advantage)# See Dueling_DQN Paperaction_advantage = tf.keras.layers.Lambda(lambda a: a[:, :] - tf.keras.backend.mean(a[:, :], keepdims=True),output_shape=(num_actions,))(action_advantage)# 相加Q = tf.keras.layers.add([state_value, action_advantage])# define modelmodel = tf.keras.Model(inputs=input_node, outputs=Q)return model

其中,使用tf.keras.layers.Lambda自定义网络层,lambda a: a[:, :] - tf.keras.backend.mean(a[:, :]就是实现动作优势函数的关键。但是,最终输出的还是Q,要把动作优势函数和状态函数两部分加起来。因此,其在训练过程中和DQN没有什么不同。

4 Dueling DQN效果

对于LunarLander登陆器这个环境,Dueling DQN没有带来非常明显的改善,也有可能是因为我没有调参数。

在这里插入图片描述

这篇关于09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524552

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交