09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

2023-12-22 15:52

本文主要是介绍09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

参考:

论文地址:https://proceedings.mlr.press/v48/wangf16.pdf

LunarLander复现:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

0、实践背景

gym的LunarLander是一个用于强化学习的经典环境。在这个环境中,智能体(agent)需要控制一个航天器在月球表面上着陆。航天器的动作包括向上推进、不进行任何操作、向左推进或向右推进。环境的状态包括航天器的位置、速度、方向、是否接触到地面或月球上空等。

智能体的任务是在一定的时间内通过选择正确的动作使航天器安全着陆,并且尽可能地消耗较少的燃料。如果航天器着陆时速度过快或者与地面碰撞,任务就会失败。智能体需要通过不断地尝试和学习来选择最优的动作序列,以完成这个任务。

下面是训练的结果:
在这里插入图片描述

2、Dueling DQN实现原理

2.1 Dueling DQN基本知识

Dueling Deep Q Network(Dueling DQN)是对DQN算法的改进,有效提升了算法的性能。如果对DQN还不了解的话可以先参考:07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

简单回顾一下DQN的基本知识,DQN的输出依赖于Q网络,其输出实际上是动作价值函数,该函数的维度等于动作空间的维度,就是你能执行的动作的数量。例如,动作价值函数的输出是[0.1,0.2,0.3],我可以执行的动作是【上、左、右】,那么显而易见,执行右动作所获得的动作价值最高,那么我们所执行的动作应该是(如果贪心策略的话)。

Dueling DQN是在DQN的基础上进行改进,其输出包含两个部分,分别是状态价值和动作优势。
显然,状态价值用于衡量当前状态的优劣,其实际上是一个数(标量),而动作优势函数的维度等于动作空间的维度,代表执行每个动作能带来多大的相对优势

动作优势函数的和为0,因此其实际上是一个相对值,表示某个动作相对其均值(所有动作价值的均值)能够带来多大的优势。

DQN和Dueling DQN的网络结构如下所示,可以看到Dueling DQN输出包含两个部分,将动作优势和其状态价值求和就是原来的动作价值函数Q(动作价值函数Q就是经典DQN的输出)。

更深入一点,状态价值函数V实际上就是动作价值函数Q的期望,也可以简单理解为状态价值函数是Q的均值: V π ( s t ) = E [ Q π ( s t , A ) ] V_{\pi}(s_{t})=E\left[Q_{\pi}(s_{t},A)\right] Vπ(st)=E[Qπ(st,A)]。由此,Dueling DQN实际上是把输出拆成了两部分,一部分是Q的均值mean(Q),一部分是Q-mean(Q)的部分,两部分的和就是Q函数,与DQN一致。
在这里插入图片描述

2.2 Dueling DQN能够带来性能提升的简单直觉

将原来的动作价值函数Q,拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q)有什么好处呢?在此举例:

存在一种情况,无论你采取任何动作,对结果的影响可能都并不关键。

例如,朱元璋开局一个碗,到发家致富建立大明,必然是发奋刻苦,抓住实际,因此,他的每一个动作的选择都至关重要,会对他的未来造成很大的影响。再例如,我开局10个亿,我每天吃吃喝喝,干啥都能享受生活,反正那么多米一辈子也用不完嘞。这种情况下,我采取什么动作已经不是很重要了,毕竟开局就在罗马。

因此,将原来的动作价值函数拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q),是合理的,可以分辨当前的动作优势是自身动作带来的还是当前环境带来的,这样各司其职,效果也会更好。

关于“分辨当前的动作优势是自身动作带来的还是当前环境带来的”,还有一个方便读者理解的例子,例如我一届书生,进京赶考,考取功名当官了,那这种情况我获得的奖励大概来自自身的动作;但是如果我是宰相的儿子,也当官了,可能当前环境(我的爸爸是宰相)所造成的优势会更大一点。

3 Dueling DQN的代码实现

基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)已经给出了DQN的全部实现代码,Dueling DQN只是在网络构建上有所不同。Dueling DQN的网络构建代码如下所示:

def GenModelDuelingDQN(num_actions, input_dims, fc1, fc2, fc3):# define inputinput_node = tf.keras.Input(shape=input_dims)input_layer = input_node# define state value function(计算状态价值函数)state_value = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)state_value = tf.keras.layers.Dense(1, activation='linear')(state_value)# state value and action value need to have the same shape for adding# 这里是进行统一维度的state_value = tf.keras.layers.Lambda(lambda s: tf.keras.backend.expand_dims(s[:, 0], axis=-1),output_shape=(input_dims,))(state_value)# define acion advantage (行为优势)action_advantage = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)action_advantage = tf.keras.layers.Dense(fc2, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(fc3, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(num_actions, activation='linear')(action_advantage)# See Dueling_DQN Paperaction_advantage = tf.keras.layers.Lambda(lambda a: a[:, :] - tf.keras.backend.mean(a[:, :], keepdims=True),output_shape=(num_actions,))(action_advantage)# 相加Q = tf.keras.layers.add([state_value, action_advantage])# define modelmodel = tf.keras.Model(inputs=input_node, outputs=Q)return model

其中,使用tf.keras.layers.Lambda自定义网络层,lambda a: a[:, :] - tf.keras.backend.mean(a[:, :]就是实现动作优势函数的关键。但是,最终输出的还是Q,要把动作优势函数和状态函数两部分加起来。因此,其在训练过程中和DQN没有什么不同。

4 Dueling DQN效果

对于LunarLander登陆器这个环境,Dueling DQN没有带来非常明显的改善,也有可能是因为我没有调参数。

在这里插入图片描述

这篇关于09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524552

相关文章

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.