数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想

本文主要是介绍数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 如何理解“回溯算法”?
  • 两个回溯算法的经典应用
  • 内容小结

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
我们在前面深度优先搜索算法利用的是回溯算法思想。这个算法思想非常简单,但是应用却非常广泛。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式匹配、编译原理中的语法分析等。
除此之外,很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。既然应用如此广泛,我们今天就来学习一下这个算法思想,看看它是如何指导我们解决问题的。

如何理解“回溯算法”?

在我们的一生中,会遇到很多重要的岔路口。人的一生就是不断在岔路口作出选择的过程。如果人生可以量化,那如何才能在岔路口做出最正确的选择,让自己的人生“最优”呢?
我们可以借助贪心算法,在每次面对岔路口的时候,都做出看起来最优的选择,期望这一组选择可以使得我们的人生达到“最优”。但是,贪心算法并不一定能得到最优解。那有没有什么办法能得到最优解呢?2004 年上映了一部非常著名的电影《蝴蝶效应》,主人公给我们作出了回答。当然,这只是科幻电影,我们的人生是无法倒退的,但是这其中蕴含的思想其实就是回溯算法。
笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。
回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。
我举一个经典的回溯例子,八皇后问题。
我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。
在这里插入图片描述
我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

回溯算法非常适合用递归代码实现,代码如下:

int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);if (row == 8) { // 8个棋子都放置好了,打印结果printQueens(result);return; // 8行棋子都放好了,已经没法再往下递归了,所以就return}for (int column = 0; column < 8; ++column) { // 每一行都有8中放法if (isOk(row, column)) { // 有些放法不满足要求result[row] = column; // 第row行的棋子放到了column列cal8queens(row+1); // 考察下一行}}
}private boolean isOk(int row, int column) {//判断row行column列放置是否合适int leftup = column - 1, rightup = column + 1;for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行if (result[i] == column) return false; // 第i行的column列有棋子吗?if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?if (result[i] == leftup) return false;}if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?if (result[i] == rightup) return false;}--leftup; ++rightup;}return true;
}private void printQueens(int[] result) { // 打印出一个二维矩阵for (int row = 0; row < 8; ++row) {for (int column = 0; column < 8; ++column) {if (result[row] == column) System.out.print("Q ");else System.out.print("* ");}System.out.println();}System.out.println();
}

两个回溯算法的经典应用

  1. .0-1 背包
    0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是今天讲的回溯算法。我们先来看下,如何用回溯法解决这个问题。
    0-1 背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是 Wkg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?
    实际上,背包问题我们在贪心算法那一节,已经讲过一个了,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。显然,这个问题已经无法通过贪心算法来解决了。我们现在来看看,用回溯算法如何来解决。
    对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2 n 2^n 2n种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。不过,我们如何才能不重复地穷举出这 2 n 2^n 2n 种装法呢?
    这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。
    这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品。
public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值
// cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
// w背包重量;items表示每个物品的重量;n表示物品个数
// 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品if (cw > maxW) maxW = cw;return;}f(i+1, cw, items, n, w);if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了f(i+1,cw + items[i], items, n, w);}
}
  1. 正则表达式
    我们再来看另外一个例子,正则表达式匹配。实际上,正则表达式里最重要的一种算法思想就是回溯。
    正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正则表达式中只包含“”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“”匹配任意多个(大于等于 0 个)任意字符,“?”匹配零个或者一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?
    我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。
public class Pattern {private boolean matched = false;private char[] pattern; // 正则表达式private int plen; // 正则表达式长度public Pattern(char[] pattern, int plen) {this.pattern = pattern;this.plen = plen;}public boolean match(char[] text, int tlen) { // 文本串及长度matched = false;rmatch(0, 0, text, tlen);return matched;}private void rmatch(int ti, int pj, char[] text, int tlen) {if (matched) return; // 如果已经匹配了,就不要继续递归了if (pj == plen) { // 正则表达式到结尾了if (ti == tlen) matched = true; // 文本串也到结尾了return;}if (pattern[pj] == '*') { // *匹配任意个字符for (int k = 0; k <= tlen-ti; ++k) {rmatch(ti+k, pj+1, text, tlen);}} else if (pattern[pj] == '?') { // ?匹配0个或者1个字符rmatch(ti, pj+1, text, tlen);rmatch(ti+1, pj+1, text, tlen);} else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行rmatch(ti+1, pj+1, text, tlen);}}
}

内容小结

回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。
尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1 背包问题、图的着色、旅行商问题、数独、全排列、正则表达式匹配等等。如果感兴趣的话,你可以自己搜索研究一下,最好还能用代码实现一下。如果这几个问题都能实现的话,你基本就掌握了回溯算法。

这篇关于数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523553

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、