DCC2023:基于梯度线性模型的帧内色度预测

2023-12-22 03:04

本文主要是介绍DCC2023:基于梯度线性模型的帧内色度预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本来自DCC2023文章《Gradient Linear Model for Chroma Intra Prediction》

在VVC中引入了CCLM工具,CCLM用于帧内预测,它根据一个线性模型通过亮度像素重建值获得色度像素的预测值。对于YUV420格式的视频,需要先将亮度分量使用低通滤波器下采样到和色度分量同样的分辨率,然后使用线性模型计算色度的预测值。然而下采样过程会丢失空域信息(例如边界、梯度),为了解决这个问题,文章提出了梯度线性模型(Gradient Linear Model, GLM),GLM使用高通梯度滤波器来对亮度进行下采样。文章提出了两个GLM模型:两参数模式、三参数模型。GLM已经被集成到ECM-6.0和ECM-7.0参考软件中。

CCLM


CCLM使用线性模型通过亮度重建像素预测色度,

  C = \alpha \cdot L+\beta

alpha和beta是模型参数,使用上方和左侧重建像素计算。

对于YUV420和YUV422视频,需要使用低通滤波器对亮度重建像素下采样,下面是420格式下采样使用的滤波器,

图1是420格式亮度和色度像素对应的位置,

图1

GLM


Two-parameter GLM
2参数GLM和CCLM的结构一样,唯一的区别是使用的下采样滤波器不同。

图2 使用垂直梯度滤波器取代低通滤波器

图2是垂直滤波器的一个例子,然后使用下面的线性模型预测色度值。可以看见它和CCLM过程一样,只不过输入由下采样的亮度值L变为亮度的梯度值G。

  C = \alpha \cdot G+\beta

GLM共有16个不同方向的梯度滤波器,如图3,编码器可以自适应选择。

图3 2-parmeter GLM的16个滤波器

Three-parameter GLM


3-parmeter GLM将CCLM和2-parmeter GLM相结合,如下式,

  C = \alpha_{0} \cdot G+\alpha_{1}+\beta

CCLM计算模型参数使用1行/列重建像素,为了增加模型的鲁棒性,3-parmeter GLM在计算模型参数时使用6行/列重建像素。

实验结果


实验平台ECM-5.0,实验配置All Intra和Random Access,

表1是2-parmeter GLM的实验结果,表2是3-parmeter GLM的实验结果,对比表1和表2可以发现3-parmeter GLM在屏幕内容上表现更好。

表1 2-parmeter GLM在ECM5.0的结果

表2 3-parmeter GLM在ECM5.0的结果

感兴趣的请关注微信公众号Video Coding

这篇关于DCC2023:基于梯度线性模型的帧内色度预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522385

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU