本文主要是介绍国产DeepSeek Coder 33B开源:创新代码AI,性能优于CodeLlama,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
引言
近日,国产AI领域迎来了一项重大突破:DeepSeek团队正式发布了DeepSeek Coder 33B模型,这一基于最新人工智能技术的代码生成模型不仅完全开源,而且在多项评测中显示出优于同类产品CodeLlama的卓越性能。
-
Huggingface模型下载: https://huggingface.co/deepseek-ai
-
AI快站模型免费加速下载: https://aifasthub.com/models/deepseek-ai
模型概述
DeepSeek Coder系列包括1B、5.7B、6.7B及33B多个版本,涵盖广泛的代码和自然语言处理任务。这些模型均在包含大量代码和自然语言的数据集上进行训练,特别是33B版本,在多语言编程评测中表现出色。
性能评估
在包括HumanEval、MultiPL-E、MBPP、DS-1000和APPS等多个权威编程基准上,DeepSeek Coder 33B展现了非凡的性能。特别是在33B版本中,该模型在HumanEval Python、HumanEval多语言、MBPP和DS-1000上的性能分别超过了CodeLlama 34B模型7.9%、9.3%、10.8%和5.9%。
训练数据与模型结构
DeepSeek Coder 33B在包含2万亿(2T)tokens的大型数据集上训练,其中87%为代码,13%为中英文自然语言。模型采用项目级代码语料库,引入16K窗口大小和填空任务,支持项目级代码补全和内嵌任务。该模型使用自回归Transformer解码器架构,7B模型采用多头注意力机制,而33B模型则使用分组查询注意力机制。
数学和编码能力
DeepSeek Coder不仅在代码生成上表现出色,还在数学和推理评测中展示了强大的能力。
数据处理与模型训练流程
DeepSeek Coder的数据处理流程包括从GitHub收集代码数据、解析代码文件依赖关系、组织依赖文件等步骤,以确保数据质量和多样性。模型训练过程包括初步预训练、扩展窗口大小的进一步预训练以及指令微调。
开源与应用前景
作为完全开源的模型,DeepSeek Coder为开发者社区提供了前所未有的灵活性和应用可能性。从复杂的代码生成到项目级代码补全,从数据分析到Bug修复,DeepSeek Coder都展示了强大的应用潜力。
结论
DeepSeek Coder 33B的发布,不仅标志着国产人工智能技术的一个重要进步,也为全球的开发者和研究者提供了一个强大的工具。其在性能上超越CodeLlama的成就,预示着更广泛的应用场景和更深远的技术影响。随着AI技术的不断发展,DeepSeek Coder无疑将在代码AI领域扮演越来越重要的角色。
模型下载
Huggingface模型下载
https://huggingface.co/deepseek-ai
AI快站模型免费加速下载
https://aifasthub.com/models/deepseek-ai
这篇关于国产DeepSeek Coder 33B开源:创新代码AI,性能优于CodeLlama的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!