【Week-P2】CNN彩色图片分类-CIFAR10数据集

2023-12-22 01:04

本文主要是介绍【Week-P2】CNN彩色图片分类-CIFAR10数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结
    • 3.1 ⭐ `torch.nn.Conv2d()`详解
    • 3.2 ⭐ `torch.nn.Linear()`详解
    • 3.3 ⭐`torch.nn.MaxPool2d()`详解
    • 3.4 ⭐ 关于卷积层、池化层的计算
    • 4.2.1 `optimizer.zero_grad()`说明
    • 4.2.2 `loss.backward()`说明
    • 4.2.3 `optimizer.step()`说明
    • 4.4.1 `model.train()`说明
    • 4.4.2 `model.eval()`说明

本文采用CIFAR10数据集,通过简单CNN来实现彩色图片识别。

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、环境配置

# 1. 设置环境
import sys
from datetime import datetimeimport torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvisionprint("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

二、准备数据

导入数据的方式和【Week P1】中的方法是一致的,都是通过dataset下载数据集、通过dataloader加载数据集。

'''
2. 导入数据使用dataset下载CIFAR10数据集,并划分好训练集与测试集使用dataloader加载数据,并设置好基本的batch_size
'''
print("---------------------2.1 下载CIFAR10数据集,并划分训练集和测试集------------------")
train_ds = torchvision.datasets.CIFAR10('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)test_ds  = torchvision.datasets.CIFAR10('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)print("---------------------2.2 设置batch_size------------------")
batch_size = 32train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)test_dl  = torch.utils.data.DataLoader(test_ds, batch_size=batch_size)print("---------------------2.2.1 取一个批次查看数据格式------------------")
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shapeprint("---------------------2.3 数据可视化------------------")
import numpy as np# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):# 维度缩减npimg = imgs.numpy().transpose((1, 2, 0))# 将整个figure分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(npimg, cmap=plt.cm.binary)plt.axis('off')#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

等待漫长的4h35min后:
在这里插入图片描述

三、搭建网络结构

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

用到的运算主要有:卷积、池化

网络结构:
在这里插入图片描述

以下几点涉及到的内容,统一在文末说明:
3.1 ⭐ torch.nn.Conv2d()详解
3.2 ⭐ torch.nn.Linear()详解
3.3 ⭐torch.nn.MaxPool2d()详解
3.4 ⭐ 关于卷积层、池化层的计算

print("---------------------3.1 定义简单CNN网络,要点:卷积和池化运算------------------")
import torch.nn.functional as Fnum_classes = 10  # 图片的类别数class Model(nn.Module):def __init__(self):super().__init__()# 特征提取网络self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   self.pool2 = nn.MaxPool2d(kernel_size=2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   self.pool3 = nn.MaxPool2d(kernel_size=2) # 分类网络self.fc1 = nn.Linear(512, 256)          self.fc2 = nn.Linear(256, num_classes)# 前向传播def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))     x = self.pool2(F.relu(self.conv2(x)))x = self.pool3(F.relu(self.conv3(x)))x = torch.flatten(x, start_dim=1)x = F.relu(self.fc1(x))x = self.fc2(x)return xprint("---------------------3.2 加载和打印网络结构------------------")
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)summary(model)

在这里插入图片描述

四、开始训练

4.2 编写训练函数中,用到的函数有:

  • optimizer.zero_grad()
  • loss.backward()
  • optimizer.step()

在文末说明每个函数的使用方法

4.3 编写测试函数中:

  • 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

4.4 正式训练中,使用的训练方法包括:

  • model.train():作用是启用 Batch Normalization 和 Dropout
  • model.eval():作用是不启用 Batch Normalization 和 Dropout
# 4. 训练模型
print("---------------------4.1 设置超参数------------------")
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)print("---------------------4.2 编写训练函数-----------------")
# 训练循环
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossprint("---------------------4.3 编写测试函数-----------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossprint("---------------------4.4 正式训练-----------------")
epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

五、查看训练结果

print("---------------------5. 查看训练结果-----------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
可以看到,训练10个epoch后的效果是非常差的,训练准确率和测试准确率都不到60%。

六、总结

3.1 ⭐ torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明:

  • in_channels ( int ):输入图像中的通道数
  • out_channels ( int ) : 卷积产生的通道数
  • kernel_size ( int or tuple ) :卷积核的大小
  • stride ( int or tuple , optional ) :卷积的步长。默认值:1
  • padding ( int , tuple或str , optional ) : 添加到输入的所有四个边的填充。默认值:0
  • dilation (int or tuple, optional):膨胀操作,控制kernel点(卷积核点)的间距,默认值:1。
  • padding_mode (字符串,可选) : ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
  • 关于dilation参数图解:
    在这里插入图片描述

3.2 ⭐ torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

3.3 ⭐torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size(核的大小)
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步长的参数

3.4 ⭐ 关于卷积层、池化层的计算

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)→ 64, 30, 30(经过卷积层1)→ 64, 15, 15(经过池化层1)→ 64, 13, 13(经过卷积层2)→ 64, 6, 6(经过池化层2)→ 128, 4, 4(经过卷积层3) → 128, 2, 2(经过池化层3)→ 512 -> 256→ num_classes(10)

计算过程如下:
(1)卷积输出shape公式:
在这里插入图片描述
输入数据为:[3, 32, 32],即图片矩阵大小为32*32,卷积核大小为3,填充步长为默认值0,步长为默认值1,代入计算得到输出的大小为:30*30,输出通道不变,所以输入数据[3, 32, 32]经过Conv1层后得到的shape为·[64, 30, 30]·。

(2)池化输出公式:
在这里插入图片描述
输入的数据格式(从Conv1得到)是:[64, 30, 30] [C*Hin*Win],已知:Hin=30,padding=0,dilation=1,kernel_size=2,stride=2(即kernel_size),代入上述池化公式,可得Hout=15
同理,Wout=15,C保持不变,故而output.shape [64, 15, 15]
在这里插入图片描述

4.2.1 optimizer.zero_grad()说明

  • optimizer.zero_grad()函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

4.2.2 loss.backward()说明

  • PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

  • 具体来说,torch.tensorautograd包的基础类,如果设置tensorrequires_gradsTrue,就会开始跟踪在这个tensor上的所有运算,如果做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

  • 更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个wrequires_gradsTrue,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w.grad属性中。

  • 如果没有进行tensor.backward()的话,梯度值将会是None因此loss.backward()要写在optimizer.step()之前

4.2.3 optimizer.step()说明

  • step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

  • 注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

4.4.1 model.train()说明

  • model.train()的作用是:启用 Batch NormalizationDropout

  • 如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()

  • model.train()是保证BN层能够用到每一批数据的均值和方差。

  • 对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

4.4.2 model.eval()说明

  • model.eval()的作用是:不启用 Batch NormalizationDropout

  • 如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()

  • model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。

  • 对于Dropout,model.eval()是将所有网络连接都利用起来,即不进行随机舍弃神经元。

  • 训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

这篇关于【Week-P2】CNN彩色图片分类-CIFAR10数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522117

相关文章

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解