【Week-P2】CNN彩色图片分类-CIFAR10数据集

2023-12-22 01:04

本文主要是介绍【Week-P2】CNN彩色图片分类-CIFAR10数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结
    • 3.1 ⭐ `torch.nn.Conv2d()`详解
    • 3.2 ⭐ `torch.nn.Linear()`详解
    • 3.3 ⭐`torch.nn.MaxPool2d()`详解
    • 3.4 ⭐ 关于卷积层、池化层的计算
    • 4.2.1 `optimizer.zero_grad()`说明
    • 4.2.2 `loss.backward()`说明
    • 4.2.3 `optimizer.step()`说明
    • 4.4.1 `model.train()`说明
    • 4.4.2 `model.eval()`说明

本文采用CIFAR10数据集,通过简单CNN来实现彩色图片识别。

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、环境配置

# 1. 设置环境
import sys
from datetime import datetimeimport torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvisionprint("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

二、准备数据

导入数据的方式和【Week P1】中的方法是一致的,都是通过dataset下载数据集、通过dataloader加载数据集。

'''
2. 导入数据使用dataset下载CIFAR10数据集,并划分好训练集与测试集使用dataloader加载数据,并设置好基本的batch_size
'''
print("---------------------2.1 下载CIFAR10数据集,并划分训练集和测试集------------------")
train_ds = torchvision.datasets.CIFAR10('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)test_ds  = torchvision.datasets.CIFAR10('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensordownload=True)print("---------------------2.2 设置batch_size------------------")
batch_size = 32train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)test_dl  = torch.utils.data.DataLoader(test_ds, batch_size=batch_size)print("---------------------2.2.1 取一个批次查看数据格式------------------")
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shapeprint("---------------------2.3 数据可视化------------------")
import numpy as np# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):# 维度缩减npimg = imgs.numpy().transpose((1, 2, 0))# 将整个figure分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(npimg, cmap=plt.cm.binary)plt.axis('off')#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

等待漫长的4h35min后:
在这里插入图片描述

三、搭建网络结构

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

用到的运算主要有:卷积、池化

网络结构:
在这里插入图片描述

以下几点涉及到的内容,统一在文末说明:
3.1 ⭐ torch.nn.Conv2d()详解
3.2 ⭐ torch.nn.Linear()详解
3.3 ⭐torch.nn.MaxPool2d()详解
3.4 ⭐ 关于卷积层、池化层的计算

print("---------------------3.1 定义简单CNN网络,要点:卷积和池化运算------------------")
import torch.nn.functional as Fnum_classes = 10  # 图片的类别数class Model(nn.Module):def __init__(self):super().__init__()# 特征提取网络self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   self.pool2 = nn.MaxPool2d(kernel_size=2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   self.pool3 = nn.MaxPool2d(kernel_size=2) # 分类网络self.fc1 = nn.Linear(512, 256)          self.fc2 = nn.Linear(256, num_classes)# 前向传播def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))     x = self.pool2(F.relu(self.conv2(x)))x = self.pool3(F.relu(self.conv3(x)))x = torch.flatten(x, start_dim=1)x = F.relu(self.fc1(x))x = self.fc2(x)return xprint("---------------------3.2 加载和打印网络结构------------------")
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)summary(model)

在这里插入图片描述

四、开始训练

4.2 编写训练函数中,用到的函数有:

  • optimizer.zero_grad()
  • loss.backward()
  • optimizer.step()

在文末说明每个函数的使用方法

4.3 编写测试函数中:

  • 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

4.4 正式训练中,使用的训练方法包括:

  • model.train():作用是启用 Batch Normalization 和 Dropout
  • model.eval():作用是不启用 Batch Normalization 和 Dropout
# 4. 训练模型
print("---------------------4.1 设置超参数------------------")
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)print("---------------------4.2 编写训练函数-----------------")
# 训练循环
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossprint("---------------------4.3 编写测试函数-----------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossprint("---------------------4.4 正式训练-----------------")
epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

五、查看训练结果

print("---------------------5. 查看训练结果-----------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
可以看到,训练10个epoch后的效果是非常差的,训练准确率和测试准确率都不到60%。

六、总结

3.1 ⭐ torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明:

  • in_channels ( int ):输入图像中的通道数
  • out_channels ( int ) : 卷积产生的通道数
  • kernel_size ( int or tuple ) :卷积核的大小
  • stride ( int or tuple , optional ) :卷积的步长。默认值:1
  • padding ( int , tuple或str , optional ) : 添加到输入的所有四个边的填充。默认值:0
  • dilation (int or tuple, optional):膨胀操作,控制kernel点(卷积核点)的间距,默认值:1。
  • padding_mode (字符串,可选) : ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
  • 关于dilation参数图解:
    在这里插入图片描述

3.2 ⭐ torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

3.3 ⭐torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size(核的大小)
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步长的参数

3.4 ⭐ 关于卷积层、池化层的计算

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)→ 64, 30, 30(经过卷积层1)→ 64, 15, 15(经过池化层1)→ 64, 13, 13(经过卷积层2)→ 64, 6, 6(经过池化层2)→ 128, 4, 4(经过卷积层3) → 128, 2, 2(经过池化层3)→ 512 -> 256→ num_classes(10)

计算过程如下:
(1)卷积输出shape公式:
在这里插入图片描述
输入数据为:[3, 32, 32],即图片矩阵大小为32*32,卷积核大小为3,填充步长为默认值0,步长为默认值1,代入计算得到输出的大小为:30*30,输出通道不变,所以输入数据[3, 32, 32]经过Conv1层后得到的shape为·[64, 30, 30]·。

(2)池化输出公式:
在这里插入图片描述
输入的数据格式(从Conv1得到)是:[64, 30, 30] [C*Hin*Win],已知:Hin=30,padding=0,dilation=1,kernel_size=2,stride=2(即kernel_size),代入上述池化公式,可得Hout=15
同理,Wout=15,C保持不变,故而output.shape [64, 15, 15]
在这里插入图片描述

4.2.1 optimizer.zero_grad()说明

  • optimizer.zero_grad()函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

4.2.2 loss.backward()说明

  • PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

  • 具体来说,torch.tensorautograd包的基础类,如果设置tensorrequires_gradsTrue,就会开始跟踪在这个tensor上的所有运算,如果做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

  • 更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个wrequires_gradsTrue,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w.grad属性中。

  • 如果没有进行tensor.backward()的话,梯度值将会是None因此loss.backward()要写在optimizer.step()之前

4.2.3 optimizer.step()说明

  • step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

  • 注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

4.4.1 model.train()说明

  • model.train()的作用是:启用 Batch NormalizationDropout

  • 如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()

  • model.train()是保证BN层能够用到每一批数据的均值和方差。

  • 对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

4.4.2 model.eval()说明

  • model.eval()的作用是:不启用 Batch NormalizationDropout

  • 如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()

  • model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。

  • 对于Dropout,model.eval()是将所有网络连接都利用起来,即不进行随机舍弃神经元。

  • 训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

这篇关于【Week-P2】CNN彩色图片分类-CIFAR10数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/522117

相关文章

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)

雨量传感器的分类和选型建议

物理原理分类 机械降雨量计(雨量桶):最早使用的降雨量传感器,通过漏斗收集雨水并记录。主要用于长期降雨统计,故障率较低。电容式降雨量传感器:基于两个电极之间的电容变化来计算降雨量。当降雨时,水滴堵住电极空间,改变电容值,从而计算降雨量。超声波式降雨量传感器:利用超声波的反射来计算降雨量。适用于大降雨量的场合。激光雷达式降雨量传感器:利用激光技术测量雨滴的速度、大小和形状等参数,并计算降雨量。主

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

数据时代的数字企业

1.写在前面 讨论数据治理在数字企业中的影响和必要性,并介绍数据治理的核心内容和实践方法。作者强调了数据质量、数据安全、数据隐私和数据合规等方面是数据治理的核心内容,并介绍了具体的实践措施和案例分析。企业需要重视这些方面以实现数字化转型和业务增长。 数字化转型行业小伙伴可以加入我的星球,初衷成为各位数字化转型参考库,星球内容每周更新 个人工作经验资料全部放在这里,包含数据治理、数据要

如何在Java中处理JSON数据?

如何在Java中处理JSON数据? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨在Java中如何处理JSON数据。JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,在现代应用程序中被广泛使用。Java通过多种库和API提供了处理JSON的能力,我们将深入了解其用法和最佳

两个基因相关性CPTAC蛋白组数据

目录 蛋白数据下载 ①蛋白数据下载 1,TCGA-选择泛癌数据  2,TCGA-TCPA 3,CPTAC(非TCGA) ②蛋白相关性分析 1,数据整理 2,蛋白相关性分析 PCAS在线分析 蛋白数据下载 CPTAC蛋白组学数据库介绍及数据下载分析 – 王进的个人网站 (jingege.wang) ①蛋白数据下载 可以下载泛癌蛋白数据:UCSC Xena (xena

中国341城市生态系统服务价值数据集(2000-2020年)

生态系统服务反映了人类直接或者间接从自然生态系统中获得的各种惠益,对支撑和维持人类生存和福祉起着重要基础作用。目前针对全国城市尺度的生态系统服务价值的长期评估还相对较少。我们在Xie等(2017)的静态生态系统服务当量因子表基础上,选取净初级生产力,降水量,生物迁移阻力,土壤侵蚀度和道路密度五个变量,对生态系统供给服务、调节服务、支持服务和文化服务共4大类和11小类的当量因子进行了时空调整,计算了

【计算机网络篇】数据链路层(12)交换机式以太网___以太网交换机

文章目录 🍔交换式以太网🛸以太网交换机 🍔交换式以太网 仅使用交换机(不使用集线器)的以太网就是交换式以太网 🛸以太网交换机 以太网交换机本质上就是一个多接口的网桥: 交换机的每个接口考研连接计算机,也可以理解集线器或另一个交换机 当交换机的接口与计算机或交换机连接时,可以工作在全双工方式,并能在自身内部同时连通多对接口,使每一对相互通信的计算机都能像

使用Jsoup抓取数据

问题 最近公司的市场部分布了一个问题,到一个网站截取一下医院的数据。刚好我也被安排做。后来,我发现为何不用脚本去抓取呢? 抓取的数据如下: Jsoup的使用实战代码 结构 Created with Raphaël 2.1.0 开始 创建线程池 jsoup读取网页 解析Element 写入sqlite 结束