使用opencv实现图像中几何图形检测

2023-12-21 12:20

本文主要是介绍使用opencv实现图像中几何图形检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 几何图形检测介绍

1.1 轮廓(contours)

什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV
中使用轮廓发现相关函数时候要求输入图像是二值图像,这样便于轮廓提取、边缘提取等操作。轮廓发现的函数与参数解释如下:

函数原型:

findContours(image, mode, method, contours=None, hierarchy=None, offset=None)

参数:

  • image输入/输出的二值图像
  • mode 迒回轮廓的结构、可以是List、Tree、External
  • method 轮廓点的编码方式,基本是基于链式编码
  • contours 迒回的轮廓集合
  • hieracrchy 迒回的轮廓层次关系
  • offset 点是否有位移

1.2 多边形逼近

多边形逼近,是通过对轮廓外形无限逼近,删除非关键点、得到轮廓的关键点,不断逼近轮廓真实形状的方法,OpenCV中多边形逼近的函数与参数解释如下:

函数原型:

approxPolyDP(curve, epsilon, closed, approxCurve=None)

参数:

  • curve 表示输入的轮廓点集合
  • epsilon 表示逼近曲率,越小表示相似逼近越厉害
  • close 是否闭合

1.3 几何距计算

图像几何距是图像的几何特征,高阶几何距中心化之后具有特征不变性,可以产生Hu距输出,用于形状匹配等操作,这里我们通过计算一阶几何距得到指定轮廓的中心位置,计算几何距的函数与参数解释如下:

函数原型:

moments(array, binaryImage=None)

参数:

  • array表示指定输入轮廓
  • binaryImage默认为None

2 基于opencv实现几何图形检测

整个代码实现分为如下几步完成

  • 加载图像,
  • 图像二值化
  • 轮廓发现
  • 几何形状识别
  • 测量周长、面积、计算中心
  • 颜色提取

2.1 加载图像并进行二值化处理

的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。

函数原型:

def threshold(src: Any,thresh: Any,maxval: Any,type: Any,dst: Any = None) -> None

src:源图像,可以为8位的灰度图,也可以为32位的彩色图像。(两者由区别)

dst:输出图像

thresh:阈值

maxval:dst图像中最大值

type:阈值类型,可以具体类型如下:

           enum ThresholdTypes {THRESH_BINARY     = 0,            //黑白

                                                 THRESH_BINARY_INV = 1,        //黑白反转

                                                 THRESH_TRUNC      = 2,        //得到图像多像素值

                                                 THRESH_TOZERO     = 3,        //当前点值大于阈值时,不改

                                                                                                    变,否则设置为0

                                                 THRESH_TOZERO_INV = 4,        //当前点值大于阈值时,

                                                                                                    设置为0,否则不改变

                                                  THRESH_MASK       = 7,

                                                  THRESH_OTSU       = 8,        //自适应阈值

                                                  THRESH_TRIANGLE   = 16
             };

具体实现代码:

frame = cv.imread("./data/jihe2.png")# 二值化图像
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
cv.imshow("input image", frame)

2.2 轮廓检测与逼近

当需要对图像进行形状分析时,需要使用多边形逼近一个轮廓,使得顶点数目变少,算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。OpenCV里面用函数approxPolyDP()实现。approxPolyDP()用另一条顶点较少的曲线来逼近一条曲线或者一个多边形,这样两条曲线之间的距离小于或等于指定的精度。同时也有使闭合逼近曲线的选项(那就是说,起始点和终止点相同)。

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,approxPolyDP 主要功能是把一个连续光滑曲线折线化,对图像轮廓点进行多边形拟合。

具体实现代码:

contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for cnt in range(len(contours)):# 提取与绘制轮廓cv.drawContours(result, contours, cnt, (0, 255, 0), 2)# 轮廓逼近epsilon = 0.01 * cv.arcLength(contours[cnt], True)approx = cv.approxPolyDP(contours[cnt], epsilon, True)

2.3 几何形状判断

根据corners数量对形状进行判断。

approx = cv.approxPolyDP(contours[cnt], epsilon, True)# 分析几何形状
corners = len(approx)
shape_type = ""if corners < 3:continueif corners == 3:count = self.shapes['triangle']count = count + 1self.shapes['triangle'] = countshape_type = "三角形"
if corners == 4:count = self.shapes['rectangle']count = count + 1self.shapes['rectangle'] = countshape_type = "矩形"
if corners >= 10:count = self.shapes['circles']count = count + 1self.shapes['circles'] = countshape_type = "圆形"
if 4 < corners < 10:count = self.shapes['polygons']count = count + 1self.shapes['polygons'] = countshape_type = "多边形"

2.4 面积周长计算

# 计算面积与周长
p = cv.arcLength(contours[cnt], True)
area = cv.contourArea(contours[cnt])
print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s " % (p, area, color_str, 

2.5 完整代码:

import cv2 as cv
import numpy as npclass ShapeAnalysis:def __init__(self):self.shapes = {'triangle': 0, 'rectangle': 0, 'polygons': 0, 'circles': 0}def analysis(self, frame):h, w, ch = frame.shaperesult = np.zeros((h, w, ch), dtype=np.uint8)# 二值化图像print("start to detect lines...\n")gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)cv.imshow("input image", frame)contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)for cnt in range(len(contours)):# 提取与绘制轮廓cv.drawContours(result, contours, cnt, (0, 255, 0), 2)# 轮廓逼近epsilon = 0.01 * cv.arcLength(contours[cnt], True)approx = cv.approxPolyDP(contours[cnt], epsilon, True)# 分析几何形状corners = len(approx)shape_type = ""if corners < 3:continueif corners == 3:count = self.shapes['triangle']count = count + 1self.shapes['triangle'] = countshape_type = "三角形"if corners == 4:count = self.shapes['rectangle']count = count + 1self.shapes['rectangle'] = countshape_type = "矩形"if corners >= 10:count = self.shapes['circles']count = count + 1self.shapes['circles'] = countshape_type = "圆形"if 4 < corners < 10:count = self.shapes['polygons']count = count + 1self.shapes['polygons'] = countshape_type = "多边形"# 求解中心位置mm = cv.moments(contours[cnt])if mm['m00'] == 0:continuecx = int(mm['m10'] / mm['m00'])cy = int(mm['m01'] / mm['m00'])cv.circle(result, (cx, cy), 3, (0, 0, 255), -1)# 颜色分析color = frame[cy][cx]color_str = "(" + str(color[0]) + ", " + str(color[1]) + ", " + str(color[2]) + ")"# 计算面积与周长p = cv.arcLength(contours[cnt], True)area = cv.contourArea(contours[cnt])print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s " % (p, area, color_str, shape_type))cv.imshow("Analysis Result", result)print("triangle: ", self.shapes['triangle'])print("rectangle: ", self.shapes['rectangle'])print("polygons: ", self.shapes['polygons'])print("circles: ", self.shapes['circles'])return self.shapesif __name__ == "__main__":src = cv.imread("./data/jihe2.png")ld = ShapeAnalysis()ld.analysis(src)cv.waitKey(0)cv.destroyAllWindows()

原始图像:

运行结果显示:

周长: 553.973, 面积: 11687.500 颜色: (190, 146, 112) 形状: 矩形 
周长: 479.556, 面积: 14743.500 颜色: (232, 162, 0) 形状: 矩形 
周长: 543.144, 面积: 18333.500 颜色: (21, 0, 136) 形状: 多边形 
周长: 341.421, 面积: 7593.000 颜色: (164, 73, 163) 形状: 多边形 
周长: 761.796, 面积: 13221.500 颜色: (87, 122, 185) 形状: 圆形 
周长: 594.257, 面积: 24703.500 颜色: (39, 127, 255) 形状: 圆形 
周长: 592.000, 面积: 14508.000 颜色: (36, 28, 237) 形状: 矩形 
周长: 432.291, 面积: 11939.500 颜色: (204, 72, 63) 形状: 多边形 
周长: 280.451, 面积: 4917.000 颜色: (190, 146, 112) 形状: 多边形 
周长: 531.588, 面积: 10587.000 颜色: (164, 73, 163) 形状: 矩形 
周长: 405.262, 面积: 4172.500 颜色: (76, 177, 34) 形状: 圆形 
周长: 370.191, 面积: 9746.000 颜色: (232, 162, 0) 形状: 圆形 
周长: 486.000, 面积: 14762.000 颜色: (232, 162, 0) 形状: 矩形 
triangle:  0
rectangle:  5
polygons:  4
circles:  4

这篇关于使用opencv实现图像中几何图形检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519978

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的