【论文解读 WWW2019】|基于开放数据的因果推断:社区环境特征如何影响居民健康?

本文主要是介绍【论文解读 WWW2019】|基于开放数据的因果推断:社区环境特征如何影响居民健康?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本篇文章是解读顶会论文的第一篇,为了追求阅读效率,省略了本人认为不影响理解的内容,并非论文的全部中文翻译,主要包括文章的核心内容和方法,想要看包含文献综述等完整论文内容的小伙伴可以自己阅读英文原文哦~

文章标题《Understanding the Effects of the Neighbourhood Built Environment on Public Health with Open Data》

       本文发表于2019年CCF-A类顶会WWW,由剑桥大学的学者提出,是关于因果推断社会科学计量经济学的论文,属于交叉学科研究方向。关于CV,NLP,RecSys等方向的顶会论文解读已有不少大佬总结,关注计量经济学和社会科学方面的顶会论文相对较少。这篇论文比较有意思,因此简要介绍帮助大家快速了解文章核心。

废话不多说,我们开始吧≡ω≡

1. 文章背景

        在公共政策以及社会科学的领域中,研究社区环境对居民健康的影响是一个较为典型的、有价值的方向。传统的研究方法以社会调研为主,其时间和空间跨度是有限的,这会导致时间和空间上的粗粒度数据(如面板数据),且大规模的社会调研会导致较高的人力物力成本,通常来说是效率很低的做法。基于此,本文利用开放数据(如OSM等项目提供的数据),在较细的时空粒度以及因果关系框架的基础上,提出了一种将邻里社区特征对居民健康的影响联系起来的方法。具体而言,作者使用因果推断等方法,研究了三年内伦敦600多个区域的运动场所对抗抑郁药处方流行率的影响,将其作为一个典型案例来证明社区环境对居民健康的影响。这种方法有很多好处,看到后面你就知道了╰( ̄▽ ̄)╭。

2. 研究方法 

        先介绍总体方法:文章关注的是社区环境的具体特征,如某些特定服务的存在(体育设施)对人口健康的outcome(如抗抑郁药处方)的影响。这里的社区环境特征被称为treatment。这里采取了因果推理的观点(假设你已经了解因果推理相关概念),文章想找到对于社区环境施加体育设施这种treatment会给人口健康结果带来的因果效应,简单来说就是,我们需要评估,当体育设施这个具体特征改变的时候,它对于人口健康结果(如抗抑郁药处方)有什么样的影响。

2.1 研究单位

       在因果推理中,实验对象叫做unit,可以是一个或者多个,在本文中可以看作是施加了treatment的研究单位,即不同的neighbourhoods,具体就是伦敦的625个行政选区(ward)。在一年开始时,每个区域都被视为施加了特定单位量的treatment。

2.2 Matching

      在介绍matching方法之前,我们要了解一个基础的因果推理方法叫做随机对照实验(RCT,randomized controlled trials),如果应用这种方法,本文的做法理论上应该是随机选择一半的区域(ward),将没有施加treatment的区域集合作为对照组(control group),剩下的作为实验组(treatment group)。但是显而易见这种方法是非常拉垮的,毕竟我们不能随心所欲地控制在哪个区域去施加treatment。

        虽然RCT的方法是不可取的,但它背后的思想非常有价值。它确保了除treatment变量的所有影响outcome的变量都是平衡的,这意味着两组对象的实验结果在treatment status上是可比的,因为treatment是唯一的区别所在。

        那么问题来了——怎样找到一个alternative method来实现RCT的思想呢?

       本文采用的是因果推理中的匹配算法(Matching Procedure)。这里要介绍一个概念叫混杂变量(confounder),它是影响treatment或outcome(包括同时影响)的变量(类似于计量经济学中的协变量&#x

这篇关于【论文解读 WWW2019】|基于开放数据的因果推断:社区环境特征如何影响居民健康?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519808

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringCloud负载均衡spring-cloud-starter-loadbalancer解读

《SpringCloud负载均衡spring-cloud-starter-loadbalancer解读》:本文主要介绍SpringCloud负载均衡spring-cloud-starter-loa... 目录简述主要特点使用负载均衡算法1. 轮询负载均衡策略(Round Robin)2. 随机负载均衡策略(

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解