SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

本文主要是介绍SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

目录

    • SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环单元融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
在这里插入图片描述

CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。

GRU门控单元个数:GRU是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的GRU神经元可以提高模型的学习能力,但可能导致过拟合。

学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。

自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述
2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);

3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述
4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价;
适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Grey Wolf Optimizer
% 灰狼优化算法function [Alpha_score, Alpha_pos, Convergence_curve, bestPred,bestNet,bestInfo ] = GWO(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
% 输入参数:
% SearchAgents_no:搜索个体的数量
% Max_iter:最大迭代次数
% lb:搜索空间的下界(一个1维向量)
% ub:搜索空间的上界(一个1维向量)
% dim:问题的维度
% fobj:要优化的目标函数,输入为一个位置向量,输出为一个标量% 初始化alpha、beta和delta的位置向量
Alpha_pos = zeros(1, dim);
Alpha_score = inf; % 对于最小化问题,请将其改为-infBeta_pos = zeros(1, dim);
Beta_score = inf; % 对于最小化问题,请将其改为-infDelta_pos = zeros(1, dim);
Delta_score = inf; % 对于最小化问题,请将其改为-inf% 初始化领导者的位置向量和得分Positions = ceil(rand(SearchAgents_no, dim) .* (ub - lb) + lb);Convergence_curve = zeros(1, Max_iter);l = 0; % 迭代计数器% 主循环
while l < Max_iterfor i = 1:size(Positions, 1)% 将超出搜索空间边界的搜索代理放回搜索空间内Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;% 计算每个搜索个体的目标函数值[fitness,Value,Net,Info] = fobj(Positions(i, :));% 更新Alpha、Beta和Delta的位置向量if fitness < Alpha_scoreAlpha_score = fitness;       % 更新Alpha的得分Alpha_pos = Positions(i, :); % 更新Alpha的位置向量bestPred = Value;bestNet = Net;bestInfo = Info;endif fitness > Alpha_score && fitness < Beta_scoreBeta_score = fitness;       % 更新Beta的得分Beta_pos = Positions(i, :); % 更新Beta的位置向量endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_scoreDelta_score = fitness;       % 更新Delta的得分Delta_pos = Positions(i, :); % 更新Delta的位置向量endenda = 2 - l * ((2) / Max_iter); % a从2线性减少到0% 更新搜索个体的位置向量for i = 1:size(Positions, 1)for j = 1:size(Positions, 2)r1 = rand(); % r1是[0,1]区间的随机数r2 = rand(); % r2是[0,1]区间的随机数A1 = 2 * a * r1 - a; % 参考文献中的公式(3.3)C1 = 2 * r2; % 参考文献中的公式(3.4)D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha; % 参考文献中的公式(3.6)-part 1r1 = rand();r2 = rand();

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

这篇关于SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515128

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect