t-SNE高维数据可视化实例

2023-12-19 23:01

本文主要是介绍t-SNE高维数据可视化实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

t-SNE:高维数据分布可视化

实例1:自动生成一个S形状的三维曲线

实例1结果

实例1完整代码

import matplotlib.pyplot as plt
from sklearn import manifold, datasets
"""对S型曲线数据的降维和可视化"""x, color = datasets.make_s_curve(n_samples=1000, random_state=0)		# 生成一个S形状的三维曲线,以及相应的颜色数据,数据点的数量为1000个,随机数种子是0,color是[1000,1]的一维数据,对应每个点的颜色
n_neighbors = 10
n_components = 2   #n_neighbors和n_components分别表示t-SNE算法中的近邻数和降维后的维度数fig = plt.figure(figsize=(15, 15))		#图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		#自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		#分为2行1列的子图布局,选择第1个子图,投影方式为3D
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral) #x[:, 0], x[:, 1], x[:, 2]代表x,y,z 绘制散点图,Spectral colormap将不同的颜色映射到数据集的不同标签上
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 将视角设置为仰角4度,方位角-72度# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components,perplexity=30)  #将原始数据降低到n_components维度;perplexity=30表示t-SNE算法的困惑度参数设置为30。
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)   ##分为2行1列的子图布局,选择第2个子图
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
plt.show()

 实例2:手写数字

实例2结果

这个由于数据量太多,呈现的效果不是很明显 

实例2完整代码

from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import torchvisiontraindata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=True, download=True)
testdata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=False, download=True)X_train = traindata.data    #[60000, 28, 28]
y_train = traindata.targets #[60000]
X_test = testdata.data      #[10000, 28, 28]
y_test = testdata.targets   #[10000]X_train = X_train.view(len(X_train), -1)  #[样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28
X_test = X_test.view(len(X_test), -1)# t-SNE降维处理
tsne = TSNE(n_components=3, verbose=1 ,random_state=42)  #n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。
train = tsne.fit_transform(X_train)
test = tsne.transform(X_test)  # 注意:使用已经训练好的t-SNE对象对验证集进行降维,不再fit_transform# 归一化处理
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
train = scaler.fit_transform(train)
test = scaler.transform(test)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(projection='3d') #创建一个三维坐标轴,并将它添加到图像窗口中
ax.set_title('t-SNE process')
ax.scatter(train[:,0], train[:,1], train[:,2] , c=y_train, marker='o', label='Train', s=10)  
#c=y_train表示根据训练集的标签y_train来对散点进行颜色编码,每个标签对应一个特定的颜色。s=10将每个数据点的大小设置为 10 像素,使用marker='o'表示使用圆圈形状的标记来表示训练集
ax.scatter(test[:,0], test[:,1], test[:,2] , c=y_test, marker='^', label='Test', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集
ax.legend()  # 添加图例,以便区分训练集和验证集plt.show()

实例3:自己的实验(判断迁移是否有效)

实例3实验结果 :

实例3代码:

from __future__ import print_function
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
import os
from data_loader_new import DatasetFolder
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn import preprocessingdef sne():ckpt_model_0 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_0.pth"my_net_0 = torch.load(ckpt_model_0)ckpt_model_9 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_99.pth"my_net_9 = torch.load(ckpt_model_9)alpha = 0source_dataset_name = 'shallow_train'  ###target_dataset_name = 'deep_train'  ###source_image_root = os.path.join('..', 't_SNE', source_dataset_name)target_image_root = os.path.join('..', 't_SNE', target_dataset_name)dataset_source = DatasetFolder(source_image_root)dataloader_source = DataLoader(dataset=dataset_source,batch_size=len(dataset_source),shuffle=True,num_workers=8)data_source_iter = iter(dataloader_source)s_img, _, _ = next(data_source_iter)  #图片,标签,位置信息_, _, s_feature_0 = my_net_0(input_data=s_img, alpha=alpha)_, _, s_feature_9 = my_net_9(input_data=s_img, alpha=alpha)  #类别,领域,特征print("源域数据加载成功")dataset_target = DatasetFolder(root=target_image_root)dataloader_target = DataLoader(dataset=dataset_target,batch_size=len(dataset_target),shuffle=True,num_workers=8)data_target_iter = iter(dataloader_target)t_img,_ ,_ = next(data_target_iter)_, _, t_feature_0 = my_net_0(input_data=t_img, alpha=alpha)_, _, t_feature_9 = my_net_9(input_data=t_img, alpha=alpha)  # 类别,领域,特征print("目标域数据加载成功")# s_img = s_img.view(len(s_img), -1)  # [样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28# t_img = t_img.view(len(t_img), -1)s_feature_0 = s_feature_0.view(len(s_feature_0), -1)t_feature_0 = t_feature_0.view(len(t_feature_0), -1)s_feature_9 = s_feature_9.view(len(s_feature_9), -1)t_feature_9 = t_feature_9.view(len(t_feature_9), -1)tsne = TSNE(n_components=2, verbose=1,random_state=42)  # n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。# shallow_before = tsne.fit_transform(s_img.detach().numpy())# deep_before = tsne.fit_transform(t_img.detach().numpy())shallow_before = tsne.fit_transform(s_feature_0.detach().numpy())deep_before = tsne.fit_transform(t_feature_0.detach().numpy())shallow_after = tsne.fit_transform(s_feature_9.detach().numpy())deep_after = tsne.fit_transform(t_feature_9.detach().numpy())scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))shallow_before = scaler.fit_transform(shallow_before)deep_before = scaler.fit_transform(deep_before)shallow_after = scaler.fit_transform(shallow_after)deep_after = scaler.transform(deep_after)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(30, 30))ax = fig.add_subplot(211)ax.set_title('第0轮次训练结果')ax.scatter(shallow_before[:, 0], shallow_before[:, 1], c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_before[:, 0], deep_before[:, 1], c='red', marker='^', label='deep', s=10)ax.legend()ax = fig.add_subplot(212)ax.set_title('第99轮次训练结果')ax.scatter(shallow_after[:,0], shallow_after[:,1],  c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_after[:,0], deep_after[:,1] , c='red', marker='^', label='deep', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集ax.legend()  # 添加图例,以便区分训练集和验证集plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号plt.show()if __name__ == '__main__':sne()print('done')

大家可以根据自己的实验需要更改代码,提醒若需要显示中文/负号,别忘了这两行代码哟!

plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

参考:http://t.csdnimg.cn/cshBV

这篇关于t-SNE高维数据可视化实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514015

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA