基于遗传算法优化深度置信网络GA-DBN实现数据时序预测附matlab代码

本文主要是介绍基于遗传算法优化深度置信网络GA-DBN实现数据时序预测附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于遗传算法优化深度置信网络GA-DBN实现数据时序预测的研究是当前机器学习领域的一个热点课题。深度置信网络(DBN)是一种基于深度学习的模型,其具有强大的特征提取和表达能力,能够对复杂的非线性关系进行建模和预测。然而,DBN模型的训练过程需要大量的计算资源和时间,并且对于网络结构的选择也存在一定的困难。

为了解决这些问题,研究者们提出了一种基于遗传算法(GA)优化DBN模型的方法,即GA-DBN。遗传算法是一种模拟自然界进化过程的优化算法,通过模拟自然选择、交叉和变异等操作,能够搜索到最优解。在GA-DBN中,遗传算法被用于搜索最优的DBN网络结构和参数配置,以提高模型的性能和效果。

GA-DBN的核心思想是通过遗传算法来调整DBN的网络结构和参数,使其能够更好地适应数据的特征和分布。具体而言,遗传算法通过不断地生成和评估候选解,然后选择和交叉优秀的个体,最终得到一个较优的DBN模型。通过这种方式,GA-DBN能够在较短的时间内找到一个较优的DBN网络结构和参数配置,从而提高了数据时序预测的准确性和效率。

与传统的DBN模型相比,GA-DBN具有以下几个优势。首先,GA-DBN能够自动地搜索最优的网络结构和参数配置,避免了人工调参的繁琐过程。其次,GA-DBN能够充分利用遗传算法的优势,快速地找到一个较优的解决方案。最后,GA-DBN能够提高数据时序预测的准确性和效率,具有较好的应用前景。

然而,虽然GA-DBN在数据时序预测方面取得了一定的成果,但仍然存在一些问题和挑战。首先,GA-DBN的性能高度依赖于遗传算法的选择和参数设置,需要进行大量的实验和调优。其次,GA-DBN在处理大规模数据时存在一定的计算复杂度和时间开销。此外,GA-DBN的可解释性和可解释性有待进一步提高。

综上所述,基于遗传算法优化深度置信网络GA-DBN实现数据时序预测是一个具有挑战性和重要性的研究方向。通过不断地改进和优化GA-DBN模型,我们可以进一步提高数据时序预测的准确性和效率,为实际应用提供更好的支持。

⛄ 核心代码

function nn = nnapplygrads(nn)%NNAPPLYGRADS updates weights and biases with calculated gradients% nn = nnapplygrads(nn) returns an neural network structure with updated% weights and biases        for i = 1 : (nn.n - 1)        if(nn.weightPenaltyL2>0)            dW = nn.dW{i} + nn.weightPenaltyL2 * [zeros(size(nn.W{i},1),1) nn.W{i}(:,2:end)];        else            dW = nn.dW{i};        end                dW = nn.learningRate * dW;                if(nn.momentum>0)            nn.vW{i} = nn.momentum*nn.vW{i} + dW;            dW = nn.vW{i};        end                    nn.W{i} = nn.W{i} - dW;    endend

⛄ 运行结果

⛄ 参考文献

[1] 谢雨岑.基于深度学习的燃料电池性能衰退预测研究[J].[2023-08-25].

[2] 赵铭生,刘守强,纪润清,等.基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深度预测[J].矿业研究与开发, 2020.

[3] 梁永兴.基于遗传算法优化神经网络的建筑物电力负荷预测[J].现代建筑电气, 2014, 000(010):10-12.

[4] 陈秋莲,王成栋.基于Matlab遗传算法工具箱的优化计算实现[J].现代电子技术, 2007, 30(2):4.DOI:10.3969/j.issn.1004-373X.2007.02.042.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于基于遗传算法优化深度置信网络GA-DBN实现数据时序预测附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513393

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert