(路透社数据集)新闻分类:多分类问题实战

2023-12-19 09:10

本文主要是介绍(路透社数据集)新闻分类:多分类问题实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 一、电影评论分类实战
    • 1-1、数据集介绍&数据集导入&分割数据集
    • 1-2、字典的键值对颠倒&数字评论解码
    • 1-3、将整数序列转化为张量(训练数据和标签)
    • 1-4、搭建神经网络&选择损失函数和优化器&划分出验证集
    • 1-5、开始训练&绘制训练损失和验证损失&绘制训练准确率和验证准确率
    • 1-6、在测试集上验证准确率
  • 二、调参总结
  • 三、碎碎念(绘制3D爱心代码)
  • 总结


前言

对于路透社数据集的评论分类实战

一、电影评论分类实战

1-1、数据集介绍&数据集导入&分割数据集

from keras.datasets import reuters# 加载路透社数据集,包含许多短新闻及其对应的主题,它包含46个不同的主题。
# 加载数据:训练数据、训练标签;测试数据、测试标签。
# 将数据限定为前10000个最常出现的单词。
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)# 查看训练数据
train_data[0:2]

输出:可以看到单词序列已经被转化为了整数序列,否则的话我们还需要手动搭建词典并且将其转化为整数序列。
在这里插入图片描述

1-2、字典的键值对颠倒&数字评论解码

# 将单词映射为整数索引的字典。
word_index = reuters.get_word_index()# 键值颠倒,将整数索引映射为单词。
# 颠倒之后,前边是整数索引,后边是对应的单词。
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])# 将评论解码,注意,索引减去了3,是因为012是特殊含义的字符。
decoded_review = ' '.join(# 根据整数索引,查找对应的单词,然后使用空格来进行连接,如果没有找到相关的索引,那就用问号代替[reverse_word_index.get(i - 3, '?') for i in train_data[0]])# 看一下颠倒后的词典
print(reverse_word_index)
# 查看一下解码后的评论
print(decoded_review)

输出reverse_word_index
在这里插入图片描述
输出decoded_review:

在这里插入图片描述

1-3、将整数序列转化为张量(训练数据和标签)

import numpy as np
def vectorize_sequences(sequences,dimension=10000):"""将整数序列转化为二进制矩阵的函数"""results = np.zeros((len(sequences), dimension))for i, sequences in enumerate(sequences):# 相应列上的元素置为1,其他位置上的元素都为0。results[i, sequences] = 1return results# 这里只是预处理的一种方式,即单词序列编码为二进制向量,当然也可以采用其他方式,
# 比如说直接填充列表,然后使其具有相同的长度,然后将其转化为张量,并且网络第一层使用能够处理这种整数张量的层,即Embedding层。
# 训练数据向量化,即将其转化为二进制矩阵
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)
# 将每个标签表示为全零向量,只有标签索引对应的元素为1
from keras.utils.np_utils import to_categorical
# keras内置这种转化方法,原理的话,与上边将整数序列转化为二进制矩阵的函数没有差别,唯一的不同是传入的维度是46,而不是10000
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)# 查看一下训练集
print(one_hot_test_labels[0])
# 查看x_train
print(x_train)

输出one_hot_test_labels[0]
在这里插入图片描述
输出x_train
在这里插入图片描述

1-4、搭建神经网络&选择损失函数和优化器&划分出验证集

units = 64
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(units, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(units, activation='relu'))
# 因为这里是46个类别,所以最后一层激活函数使用softmax,即对于每个输入样本,网络都会输出一个46维的向量,这个向量的每个元素代表不同的输出类别
model.add(layers.Dense(46, activation='softmax'))# one-hot编码标签对应categorical_crossentropy(分类交叉熵损失函数)
# 标签直接转化为张量对应sparse_categorical_crossentropy(稀疏交叉熵损失)
model.compile(optimizer='rmsprop',# 这类问题的损失一般都会使用分类交叉熵损失函数。loss = 'categorical_crossentropy',metrics = ['accuracy'])
x_val = x_train[:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

1-5、开始训练&绘制训练损失和验证损失&绘制训练准确率和验证准确率

epochs = 10history = model.fit(partial_x_train,partial_y_train,epochs=epochs,batch_size=512,validation_data=(x_val, y_val))

训练过程
在这里插入图片描述

绘制训练损失和验证损失

import plotly.express as px
import plotly.graph_objects as gohistory_dic = history.history
loss_val = history_dic['loss']
val_loss_values = history_dic['val_loss']
# epochs = range(1, len(loss_val)+1)
# np.linspace:作为序列生成器, numpy.linspace()函数用于在线性空间中以均匀步长生成数字序列
# 左闭右闭,所以是从整数120.
# 参数:起始、结束、生成的点
epochs = np.linspace(1, epochs, epochs)
fig = go.Figure()# Add traces
fig.add_trace(go.Scatter(x=epochs, y=loss_val,mode='markers',name='Training loss'))
fig.add_trace(go.Scatter(x=epochs, y=val_loss_values,mode='lines+markers',name='Validation loss'))
fig.show()

输出
在这里插入图片描述

绘制训练准确率和验证准确率

acc = history_dic['accuracy']
val_acc = history_dic['val_accuracy']
fig = go.Figure()# Add traces
fig.add_trace(go.Scatter(x=epochs, y=acc,mode='markers',name='Training acc'))
fig.add_trace(go.Scatter(x=epochs, y=val_acc,mode='lines+markers',name='Validation acc'))
fig.show()

输出
在这里插入图片描述

1-6、在测试集上验证准确率

# 两层、64个隐藏单元
# 训练轮次:20 损失:1.22 准确率:0.78
# 训练轮次:10 损失:0.96 准确率:0.79
# 训练轮次:9 损失:1.00 准确率:0.77
# 训练轮次:6 损失:1.01 准确率:0.77# 两层、128个隐藏单元 
# 训练轮次:20 损失:1.31 准确率:0.77
# 训练轮次:4 损失:0.97 准确率:0.78# 注意:准确率会浮动,一般在0.2的范围内浮动。model.evaluate(x_test, one_hot_test_labels)

在这里插入图片描述

二、调参总结

调参总结
1、训练轮次:先选择较大的轮次,一般设置为20,观察数据在验证集上的表现,训练是为了拟合一般数据,所以当模型在验证集上准确率下降时,那就不要再继续训练了。
2、隐藏单元设置:二分类选择较小的单元数,如果是多分类的话,可以试着设置较大的单元数,比如说64、128等。
3、隐藏层数设置:同隐藏单元的设置规则,这里设置的层数较少,如果数据复杂,可以多加几层来观察数据的整体表现。
4、标签直接设置为one-hot编码时,则对应设置损失为categorical_crossentropy(分类交叉熵损失函数),若标签直接转化为张量,则对应设置损失为sparse_categorical_crossentropy(稀疏交叉熵损失)。


三、碎碎念(绘制3D爱心代码)

# 刚打开csdn看到一个绘制3D爱心的代码,于是我直接白嫖过来。
import numpy as np
import wxgl.glplot as glta = np.linspace(0, 2*np.pi, 500)
b = np.linspace(0.5*np.pi, -0.5*np.pi, 500)
lons, lats = np.meshgrid(a, b)
w = np.sqrt(np.abs(a - np.pi)) * 2
x = 2 * np.cos(lats) * np.sin(lons) * w
y = -2 * np.cos(lats) * np.cos(lons) * w
z = 2 * np.sin(lats)glt.mesh(x, y, z, color='crimson') # crimson - 绯红
glt.show()

输出
在这里插入图片描述

总结

七夕不快乐,呱呱呱。

这篇关于(路透社数据集)新闻分类:多分类问题实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511650

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr