深度学习多分类问题--路透社数据集

2023-12-19 09:10

本文主要是介绍深度学习多分类问题--路透社数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境使用keras为前端,TensorFlow为后端

本次构建一个网络,将路透社新闻划分为46个类别。因为有多个类别,所以这是多分类问题。每个数据点只能划分到一个类别,所以,这是一个单标签,多分类问题。如果每个数据点可以划分到多个类别,那么就是多标签,多分类问题。

首先加载数据集

from keras.datasets import reuters
#限定为前10000个最常出现的单词
(train_data,train_labels),(test_data,test_labels) = reuters.load_data(num_words=10000)

准备数据,将数据向量化

import numpy as npdef vectorize_sequences(sequences,dimension=10000):results = np.zeros((len(sequences),dimension))for i,sequence in enumerate(sequences):results[i,sequence] = 1return results
#训练数据向量化
x_train = vectorize_sequences(train_data)
#测试数据向量化
x_test = vectorize_sequences(test_data)
def to_one_hot(labels,dimension=46):results = np.zeros((len(labels),dimension))for i,label in enumerate(labels):results[i,label] = 1return results
#训练标签向量化
one_hot_train_labels = to_one_hot(train_labels)
#测试标签向量化
one_hot_test_labels = to_one_hot(test_labels)

构建网络

由于输出类别的数量为46个,所以如果中间层的维度太低,就有可能丢失相关信息。所以这里使用64个单元的中间层

from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64,activation = 'relu',input_shape=(10000,)))
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(46,activation='softmax'))

网络的最后一层是大小为46的Dense层,所以对于每一个输入的样本,都会输出一个46维的向量

最后一层使用了softmax激活。网络将输出在46个不同输出类别上的概率分布,46维向量的总和为1

对于此例,最好的损失函数是分类交叉熵。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布距离的最小化,训练网络可使输出结果尽可能接近真实标签。

编译模型:

model.compile(optimizer ='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

留出验证集

x_val = x_train[0:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[0:1000]
partial_y_train = one_hot_train_labels[1000:]

训练模型

#fit函数用于训练模型,partial_x_train是输入数据,partial_y_train是标签,x_val是验证集的数据,y_val是验证集的标签
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1,len(loss) + 1)plt.plot(epochs,loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'b',label = 'Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

plt.clf()acc = history.history['acc']
val_acc = history.history['val_acc']plt.plot(epochs,acc,'bo',label='training acc')
plt.plot(epochs,val_acc,'b',label='Valdation acc')
plt.title('training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()plt.show()

从图中可看出,网络在第九轮后开始过拟合,所以从新训练一个网络,9个轮次

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=9,batch_size=512,validation_data=(x_val, y_val))
#model.evaluate函数计算在某些输入数据上模型的误差,x_test为输入数据,one_hot_test_labels为标签
results = model.evaluate(x_test, one_hot_test_labels)
results

 结果:精度约为78%

[0.984747028096064, 0.7845057880676759]

在测试数据上生成预测

predictions = model.predict(x_test)
predictions[0]
array([2.6853504e-05, 6.3310239e-05, 6.6731780e-05, 6.8838394e-01,2.9023853e-01, 2.4886356e-07, 1.4353501e-04, 6.5791741e-05,8.7031247e-03, 1.0868406e-05, 4.8362726e-05, 3.0135105e-03,3.6972619e-05, 1.9051113e-04, 6.1894898e-06, 2.5392617e-05,9.5336814e-04, 5.4524787e-04, 4.7846398e-04, 1.1405107e-03,1.7468960e-03, 5.3577451e-04, 7.9001420e-06, 3.4499905e-04,1.4113671e-05, 2.3861769e-04, 9.4969837e-06, 3.9085553e-05,1.6669346e-05, 1.6799838e-04, 7.7905535e-04, 5.3265714e-04,2.0784488e-05, 3.2127515e-05, 8.2047052e-05, 3.2226784e-05,7.1236005e-05, 5.9507878e-05, 9.2954113e-05, 3.8922983e-04,7.3304640e-05, 4.6987369e-04, 2.6572573e-06, 7.9232501e-05,8.1832422e-06, 1.2112055e-05], dtype=float32)
predictions[0].shape
#输出为(46,0),即每个元素都是长度为46的向量
np.argmax(predictions[0])
#输出为3,对应的概率约为68.8%

总结:

1.如果要对n个类别的数据点进行分类,网络的最后一层应该是大小为n的Dense层

2.对于单标签,多分类问题,网络的最后一层应该使用softmax激活,这样可以输出在n个输出类别上的概率分布

3.这种问题的损失函数几乎总是应该使用分类交叉熵,它将网络输出的概率分布与目标的真实分布之间的距离最小化

4.处理多分类问题的标签有两种方法

   ①通过分类编码对标签进行编码,然后使用分类交叉熵作为损失函数

   ②将标签编码为整数,使用sparse_categorical_crossentropy损失函数

5.如果需要将数据划分到许多类别中,避免使用太小的中间层,以免在网络中造成信息瓶颈

 

 

 

这篇关于深度学习多分类问题--路透社数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511635

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06