深度学习多分类问题--路透社数据集

2023-12-19 09:10

本文主要是介绍深度学习多分类问题--路透社数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境使用keras为前端,TensorFlow为后端

本次构建一个网络,将路透社新闻划分为46个类别。因为有多个类别,所以这是多分类问题。每个数据点只能划分到一个类别,所以,这是一个单标签,多分类问题。如果每个数据点可以划分到多个类别,那么就是多标签,多分类问题。

首先加载数据集

from keras.datasets import reuters
#限定为前10000个最常出现的单词
(train_data,train_labels),(test_data,test_labels) = reuters.load_data(num_words=10000)

准备数据,将数据向量化

import numpy as npdef vectorize_sequences(sequences,dimension=10000):results = np.zeros((len(sequences),dimension))for i,sequence in enumerate(sequences):results[i,sequence] = 1return results
#训练数据向量化
x_train = vectorize_sequences(train_data)
#测试数据向量化
x_test = vectorize_sequences(test_data)
def to_one_hot(labels,dimension=46):results = np.zeros((len(labels),dimension))for i,label in enumerate(labels):results[i,label] = 1return results
#训练标签向量化
one_hot_train_labels = to_one_hot(train_labels)
#测试标签向量化
one_hot_test_labels = to_one_hot(test_labels)

构建网络

由于输出类别的数量为46个,所以如果中间层的维度太低,就有可能丢失相关信息。所以这里使用64个单元的中间层

from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64,activation = 'relu',input_shape=(10000,)))
model.add(layers.Dense(64,activation='relu'))
model.add(layers.Dense(46,activation='softmax'))

网络的最后一层是大小为46的Dense层,所以对于每一个输入的样本,都会输出一个46维的向量

最后一层使用了softmax激活。网络将输出在46个不同输出类别上的概率分布,46维向量的总和为1

对于此例,最好的损失函数是分类交叉熵。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布距离的最小化,训练网络可使输出结果尽可能接近真实标签。

编译模型:

model.compile(optimizer ='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

留出验证集

x_val = x_train[0:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[0:1000]
partial_y_train = one_hot_train_labels[1000:]

训练模型

#fit函数用于训练模型,partial_x_train是输入数据,partial_y_train是标签,x_val是验证集的数据,y_val是验证集的标签
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1,len(loss) + 1)plt.plot(epochs,loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'b',label = 'Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

plt.clf()acc = history.history['acc']
val_acc = history.history['val_acc']plt.plot(epochs,acc,'bo',label='training acc')
plt.plot(epochs,val_acc,'b',label='Valdation acc')
plt.title('training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()plt.show()

从图中可看出,网络在第九轮后开始过拟合,所以从新训练一个网络,9个轮次

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=9,batch_size=512,validation_data=(x_val, y_val))
#model.evaluate函数计算在某些输入数据上模型的误差,x_test为输入数据,one_hot_test_labels为标签
results = model.evaluate(x_test, one_hot_test_labels)
results

 结果:精度约为78%

[0.984747028096064, 0.7845057880676759]

在测试数据上生成预测

predictions = model.predict(x_test)
predictions[0]
array([2.6853504e-05, 6.3310239e-05, 6.6731780e-05, 6.8838394e-01,2.9023853e-01, 2.4886356e-07, 1.4353501e-04, 6.5791741e-05,8.7031247e-03, 1.0868406e-05, 4.8362726e-05, 3.0135105e-03,3.6972619e-05, 1.9051113e-04, 6.1894898e-06, 2.5392617e-05,9.5336814e-04, 5.4524787e-04, 4.7846398e-04, 1.1405107e-03,1.7468960e-03, 5.3577451e-04, 7.9001420e-06, 3.4499905e-04,1.4113671e-05, 2.3861769e-04, 9.4969837e-06, 3.9085553e-05,1.6669346e-05, 1.6799838e-04, 7.7905535e-04, 5.3265714e-04,2.0784488e-05, 3.2127515e-05, 8.2047052e-05, 3.2226784e-05,7.1236005e-05, 5.9507878e-05, 9.2954113e-05, 3.8922983e-04,7.3304640e-05, 4.6987369e-04, 2.6572573e-06, 7.9232501e-05,8.1832422e-06, 1.2112055e-05], dtype=float32)
predictions[0].shape
#输出为(46,0),即每个元素都是长度为46的向量
np.argmax(predictions[0])
#输出为3,对应的概率约为68.8%

总结:

1.如果要对n个类别的数据点进行分类,网络的最后一层应该是大小为n的Dense层

2.对于单标签,多分类问题,网络的最后一层应该使用softmax激活,这样可以输出在n个输出类别上的概率分布

3.这种问题的损失函数几乎总是应该使用分类交叉熵,它将网络输出的概率分布与目标的真实分布之间的距离最小化

4.处理多分类问题的标签有两种方法

   ①通过分类编码对标签进行编码,然后使用分类交叉熵作为损失函数

   ②将标签编码为整数,使用sparse_categorical_crossentropy损失函数

5.如果需要将数据划分到许多类别中,避免使用太小的中间层,以免在网络中造成信息瓶颈

 

 

 

这篇关于深度学习多分类问题--路透社数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511635

相关文章

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient