【Matlab算法】灰狼优化算法问题(Grey Wolf Optimization)(附MATLAB完整代码)

本文主要是介绍【Matlab算法】灰狼优化算法问题(Grey Wolf Optimization)(附MATLAB完整代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

灰狼优化算法问题

  • 前言
    • 算法描述:
    • 算法特点:
  • 正文
  • 代码实现

前言

灰狼优化算法(Grey Wolf Optimization,GWO) 是一种模拟灰狼社会行为的启发式优化算法。它是由Seyedali Mirjalili等人于2014年提出的,灵感来源于观察灰狼社会结构中的等级和合作关系。

算法描述:

初始化群体位置: 算法开始时,将一群灰狼表示为潜在解的候选集合,这些解的位置在搜索空间中随机分布。

确定灰狼的等级: 根据适应度值,确定每个灰狼的等级。适应度越高的个体,其等级越高。

确定领导者灰狼: 选择适应度最好的灰狼作为领导者,其位置被认为是当前搜索空间中的一个潜在最优解。

更新灰狼位置: 根据灰狼社会行为规律,灰狼个体会根据领导者的位置以及其他灰狼的位置来更新自身位置。这一过程涉及到三个步骤:

追逐(Chasing): 灰狼个体通过模仿领导者的位置来更新自己的位置。这里采用线性插值的方式来调整灰狼的位置。

跟随(Following): 灰狼个体通过模仿处于追逐状态的其他灰狼的位置来更新自身位置。

探索(Exploration): 除了追逐和跟随,灰狼还会进行一定程度的随机探索,以确保算法具有全局搜索的能力。

适应度评估: 计算更新后每个灰狼的适应度值。

更新领导者: 如果某个灰狼的适应度比当前领导者更好,那么将该灰狼设为新的领导者。

重复迭代: 重复执行步骤4到步骤6,直到满足停止条件,例如达到最大迭代次数或适应度足够收敛。

算法特点:

群体智能: 灰狼优化算法模拟了灰狼社会行为,利用群体智能的特性,通过合作和竞争来引导搜索过程。

简单而有效: 灰狼优化算法的思想简单,易于实现,同时在许多优化问题上表现出色。

全局搜索和局部搜索: 灰狼优化算法在搜索空间中同时进行全局搜索和局部搜索,通过领导者和追逐行为实现全局探索,通过跟随和探索行为实现局部搜索。

对问题无依赖: 灰狼优化算法不依赖于问题的特定形式,适用于多种类型的优化问题。
在这里插入图片描述

正文

接下来我们将针对以下函数进行优化:
f ( x ) = A ⋅ exp ⁡ ( − ∥ x − c ∥ 2 σ 2 ) f(\mathbf{x}) = A \cdot \exp\left(-\frac{\|\mathbf{x} - \mathbf{c}\|^2}{\sigma^2}\right) f(x)=Aexp(σ2xc2)
其中:
x x x 是输入的向量,表示当前点的坐标。
A A A 是振幅(amplitude),用于控制峰值的高度。
c c c 是随机生成的中心点,用于控制峰值的位置。
σ σ σ 是 spread 参数,用于控制高斯分布的标准差。
这个表达式表示一个高斯分布的贡献,而在 objectiveFunction 中,多个这样的高斯分布通过循环累加在一起,模拟了多峰函数的形状。

代码实现

clear
clc
close all
warning offnum_wolves = 10;
num_dimensions = 3;
num_iterations = 100;[best_solution, best_fitness] = greyWolfOptimization_x(num_wolves, num_dimensions, num_iterations);function [best_solution, best_fitness] = greyWolfOptimization_x(num_wolves, num_dimensions, num_iterations)% 参数说明:% num_wolves:狼群大小% num_dimensions:问题的维度% num_iterations:迭代次数% 初始化灰狼群的位置wolves_positions = rand(num_wolves, num_dimensions);% 初始化灰狼群的适应度wolves_fitness = zeros(num_wolves, 1);% 初始化最佳解和最佳适应度best_solution = rand(1, num_dimensions);best_fitness = inf;% 主循环for iteration = 1:num_iterations% 更新每只狼的适应度for i = 1:num_wolves% 计算适应度,这里的目标函数需要根据具体问题修改wolves_fitness(i) = objectiveFunction(wolves_positions(i, :));% 更新最佳解和最佳适应度if wolves_fitness(i) < best_fitnessbest_fitness = wolves_fitness(i);best_solution = wolves_positions(i, :);endend% 更新每只狼的位置a = 2 - iteration * (2 / num_iterations); % 调整参数afor i = 1:num_wolvesr1 = rand(); % 随机数r2 = rand(); % 随机数A1 = 2 * a * r1 - a; % 计算A1C1 = 2 * r2; % 计算C1D_alpha = abs(C1 * best_solution - wolves_positions(i, :)); % 计算D_alphaX1 = best_solution - A1 * D_alpha; % 计算X1r1 = rand(); % 随机数r2 = rand(); % 随机数A2 = 2 * a * r1 - a; % 计算A2C2 = 2 * r2; % 计算C2D_beta = abs(C2 * best_solution - wolves_positions(i, :)); % 计算D_betaX2 = best_solution - A2 * D_beta; % 计算X2r1 = rand(); % 随机数r2 = rand(); % 随机数A3 = 2 * a * r1 - a; % 计算A3C3 = 2 * r2; % 计算C3D_delta = abs(C3 * best_solution - wolves_positions(i, :)); % 计算D_deltaX3 = best_solution - A3 * D_delta; % 计算X3% 更新狼的位置wolves_positions(i, :) = (X1 + X2 + X3) / 3;endend
endfunction fitness = objectiveFunction(x)% 复杂的目标函数示例,多峰函数% 这里使用了多个高斯分布的和,模拟多个峰值num_peaks = 5; % 设置峰值数量amplitude = 10; % 设置峰值的振幅spread = 5; % 控制分布的宽度% 计算多个峰值的贡献peaks = zeros(num_peaks, 1);for i = 1:num_peakspeaks(i) = amplitude * exp(-(norm(x - rand(1, numel(x))) / spread)^2);end% 多峰函数的值为所有峰值的和fitness = sum(peaks);
end

这篇关于【Matlab算法】灰狼优化算法问题(Grey Wolf Optimization)(附MATLAB完整代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511242

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖