互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab

本文主要是介绍互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、主要内容

本程序包含论文二、三、四、五共五章算例内容,每章内容​如下:

第二章的主要研究内容为计及光伏电站快速无功响应特性的分布式电源优化配置方法。考虑越来越多的敏感负荷接入配电系统,以及 PV-STATCOM 这一将光伏逆变器用作 STATCOM 以提供快速无功响应功能的新技术,本章提出了一类加权电压支撑能力指标以量化光伏电站在紧急状态下对敏感负荷节点电压恢复效率的影响,并将其嵌入到分布式电源优化配置模型中。对应的算例结果表明,基于这一改进模型得到的分布式电源配置方案可以有效提高瞬时故障后重要电力节点的电压恢复效率,减少电压暂降等电能质量问题给敏感负荷带来的损失。

 

第三章的主要研究内容为含多类型充电桩的电动汽车充电站优化配置方法。随着电动汽车快充技术的发展,越来越多的不同类型不同功率的充电设施接入了配电系统。这些充电设施在满足电动汽车车主多样化的充电需求的同时,也改变了电动汽车负荷的时空分布情况,从而给电动汽车充电站的优化配置带来了新的挑战。基于这一新趋势,本章提出了一种含多类型充电桩的电动汽车充电站优化配置模型,及其相应的简化处理方法,并分析了同时配置多种功率充电桩所带来的经济效益。 

第四章的主要研究内容为考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法。随着手机、平板电脑等移动智能终端的普及,以及无线通讯技术的发展,越来越多的汽车车主依赖于实时导航技术决定自己的驾驶及泊车行为。对电动汽车而言,泊车地点在很大程度上决定了其充电行为的发生处所,即对应的充电负荷的接入位置。基于这一背景,本章认为实时导航技术的普及使得电动汽车负荷在一定程度上、一定空间范围内是可调度的,并建立了相应的分布式电源与电动汽车充电站联合配置模型,分析了这种空间可调度特性对分布式电源与电动汽车充电站配置方案的影响。 

第五章的主要研究内容为单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置方法。V2G 技术的发展使得电动汽车负荷成为一类可控的资源,能够为电网运行提供峰荷转移、电压调节、旋转备用等诸多类型的辅助服务。这一技术的出现,大大增加了电动汽车与电网间的互动频率及互动深度,对传统的分布式电源与电动汽车充电站优化配置方法形成了挑战。基于这一背景,本章提出了单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置模型,分别分析了无序充电模式、单向 V2G 模式、双向 V2G模式对分布式电源与电动汽车充电站配置方案的影响。

二、部分代码

%构建负荷矩阵
for i=1:nbif sty_jd(i)==1pload(i,1:T)=P1(i).*pc_jm_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_jm_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_jm_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_jm_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_jm_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_jm_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_jm_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_jm_wd;%冬 周末elseif sty_jd(i)==2pload(i,1:T)=P1(i).*pc_sc_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_sc_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_sc_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_sc_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_sc_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_sc_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_sc_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_sc_wd;%冬 周末elsepload(i,1:T)=P1(i).*pc_bg_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_bg_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_bg_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_bg_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_bg_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_bg_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_bg_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_bg_wd;%冬 周末end
end
qload=repmat(Q1,1,8*T);
num_w=[];num_wd=[];
for i=1:nb%分别计算工作日和周末时序停车数量if sty_jd(i)==1num_w(i,:)=round(num_peak(i).*arr_jm_w./max(arr_jm_w));num_wd(i,:)=round(num_peak(i).*arr_jm_wd./max(arr_jm_wd));%停车时长分布,样本数量不足,没法用停车时长概率曲线来计算,随机产生停车时长elseif sty_jd(i)==2num_w(i,:)=round(num_peak(i).*arr_sc_w./max(arr_sc_w));num_wd(i,:)=round(num_peak(i).*arr_sc_wd./max(arr_sc_wd));elsenum_w(i,:)=round(num_peak(i).*arr_bg_w./max(arr_bg_w));num_wd(i,:)=round(num_peak(i).*arr_bg_wd./max(arr_bg_wd));end
end
%建立节点电动汽车矩阵
sum_num_w=sum(num_w);
sum_num_wd=sum(num_wd);
max_num=max(sum_num_w,sum_num_wd);
% k=1;
% for t=1:T
%     k1=1;
%     for i=1:nb
%         if stay_time_w(i,t)~=0%计算每个电动汽车的充电时长
%             for y=1:stay_time_w(i,t)
%                 st(k1,t)=t*0.25;
%             end
%             k1=k1+1;
%         end
%     end
% end
k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;%(0,1)均匀分布st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_w(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_w(k,4)=gdch(i);
%             endendendend
end
%周末情况k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_wd(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_wd(k,4)=gdch(i);
%             endendendend
end%% 1.设参
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%定义变量
V = sdpvar(nb,8*T);%电压的平方
I = sdpvar(nl,8*T);%电流的平方
P = sdpvar(nl,8*T);%线路有功
Q = sdpvar(nl,8*T);%线路无功
Pg = sdpvar(nb,8*T);%发电机有功
Qg = sdpvar(nb,8*T);%发电机无功
Nev = intvar(7,1);%备选节点充电桩数量
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,8*T);
qv = sdpvar(nb,8*T);
%sv = sdpvar(nb,8*T);
Ng = intvar(8,1);%燃气轮机安装数量
pg = intvar(nb,8*T);
Constraints = [];
%工作日充电桩情况
s_sumev=zeros(7,T);
[at,~]=size(evjd_w);
for k=1:atfor i=1:7for t=1:Tif evjd_w(k,4)==i && evjd_w(k,1)==ts_sumev(i,t)=s_sumev(i,t)+1;%计算节点充电电动汽车数量endendend
end
%周末充电站情况
s_sumevd=zeros(7,T);
[at,~]=size(evjd_wd);
for k=1:atfor i=1:7for t=1:Tif evjd_wd(k,4)==i && evjd_wd(k,1)==ts_sumevd(i,t)=s_sumevd(i,t)+1;%计算节点充电电动汽车数量endendend
end

三、程序链接

有需要的可以留言。

 

这篇关于互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510945

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象