互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab

本文主要是介绍互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、主要内容

本程序包含论文二、三、四、五共五章算例内容,每章内容​如下:

第二章的主要研究内容为计及光伏电站快速无功响应特性的分布式电源优化配置方法。考虑越来越多的敏感负荷接入配电系统,以及 PV-STATCOM 这一将光伏逆变器用作 STATCOM 以提供快速无功响应功能的新技术,本章提出了一类加权电压支撑能力指标以量化光伏电站在紧急状态下对敏感负荷节点电压恢复效率的影响,并将其嵌入到分布式电源优化配置模型中。对应的算例结果表明,基于这一改进模型得到的分布式电源配置方案可以有效提高瞬时故障后重要电力节点的电压恢复效率,减少电压暂降等电能质量问题给敏感负荷带来的损失。

 

第三章的主要研究内容为含多类型充电桩的电动汽车充电站优化配置方法。随着电动汽车快充技术的发展,越来越多的不同类型不同功率的充电设施接入了配电系统。这些充电设施在满足电动汽车车主多样化的充电需求的同时,也改变了电动汽车负荷的时空分布情况,从而给电动汽车充电站的优化配置带来了新的挑战。基于这一新趋势,本章提出了一种含多类型充电桩的电动汽车充电站优化配置模型,及其相应的简化处理方法,并分析了同时配置多种功率充电桩所带来的经济效益。 

第四章的主要研究内容为考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法。随着手机、平板电脑等移动智能终端的普及,以及无线通讯技术的发展,越来越多的汽车车主依赖于实时导航技术决定自己的驾驶及泊车行为。对电动汽车而言,泊车地点在很大程度上决定了其充电行为的发生处所,即对应的充电负荷的接入位置。基于这一背景,本章认为实时导航技术的普及使得电动汽车负荷在一定程度上、一定空间范围内是可调度的,并建立了相应的分布式电源与电动汽车充电站联合配置模型,分析了这种空间可调度特性对分布式电源与电动汽车充电站配置方案的影响。 

第五章的主要研究内容为单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置方法。V2G 技术的发展使得电动汽车负荷成为一类可控的资源,能够为电网运行提供峰荷转移、电压调节、旋转备用等诸多类型的辅助服务。这一技术的出现,大大增加了电动汽车与电网间的互动频率及互动深度,对传统的分布式电源与电动汽车充电站优化配置方法形成了挑战。基于这一背景,本章提出了单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置模型,分别分析了无序充电模式、单向 V2G 模式、双向 V2G模式对分布式电源与电动汽车充电站配置方案的影响。

二、部分代码

%构建负荷矩阵
for i=1:nbif sty_jd(i)==1pload(i,1:T)=P1(i).*pc_jm_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_jm_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_jm_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_jm_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_jm_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_jm_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_jm_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_jm_wd;%冬 周末elseif sty_jd(i)==2pload(i,1:T)=P1(i).*pc_sc_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_sc_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_sc_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_sc_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_sc_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_sc_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_sc_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_sc_wd;%冬 周末elsepload(i,1:T)=P1(i).*pc_bg_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_bg_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_bg_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_bg_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_bg_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_bg_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_bg_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_bg_wd;%冬 周末end
end
qload=repmat(Q1,1,8*T);
num_w=[];num_wd=[];
for i=1:nb%分别计算工作日和周末时序停车数量if sty_jd(i)==1num_w(i,:)=round(num_peak(i).*arr_jm_w./max(arr_jm_w));num_wd(i,:)=round(num_peak(i).*arr_jm_wd./max(arr_jm_wd));%停车时长分布,样本数量不足,没法用停车时长概率曲线来计算,随机产生停车时长elseif sty_jd(i)==2num_w(i,:)=round(num_peak(i).*arr_sc_w./max(arr_sc_w));num_wd(i,:)=round(num_peak(i).*arr_sc_wd./max(arr_sc_wd));elsenum_w(i,:)=round(num_peak(i).*arr_bg_w./max(arr_bg_w));num_wd(i,:)=round(num_peak(i).*arr_bg_wd./max(arr_bg_wd));end
end
%建立节点电动汽车矩阵
sum_num_w=sum(num_w);
sum_num_wd=sum(num_wd);
max_num=max(sum_num_w,sum_num_wd);
% k=1;
% for t=1:T
%     k1=1;
%     for i=1:nb
%         if stay_time_w(i,t)~=0%计算每个电动汽车的充电时长
%             for y=1:stay_time_w(i,t)
%                 st(k1,t)=t*0.25;
%             end
%             k1=k1+1;
%         end
%     end
% end
k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;%(0,1)均匀分布st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_w(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_w(k,4)=gdch(i);
%             endendendend
end
%周末情况k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_wd(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_wd(k,4)=gdch(i);
%             endendendend
end%% 1.设参
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%定义变量
V = sdpvar(nb,8*T);%电压的平方
I = sdpvar(nl,8*T);%电流的平方
P = sdpvar(nl,8*T);%线路有功
Q = sdpvar(nl,8*T);%线路无功
Pg = sdpvar(nb,8*T);%发电机有功
Qg = sdpvar(nb,8*T);%发电机无功
Nev = intvar(7,1);%备选节点充电桩数量
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,8*T);
qv = sdpvar(nb,8*T);
%sv = sdpvar(nb,8*T);
Ng = intvar(8,1);%燃气轮机安装数量
pg = intvar(nb,8*T);
Constraints = [];
%工作日充电桩情况
s_sumev=zeros(7,T);
[at,~]=size(evjd_w);
for k=1:atfor i=1:7for t=1:Tif evjd_w(k,4)==i && evjd_w(k,1)==ts_sumev(i,t)=s_sumev(i,t)+1;%计算节点充电电动汽车数量endendend
end
%周末充电站情况
s_sumevd=zeros(7,T);
[at,~]=size(evjd_wd);
for k=1:atfor i=1:7for t=1:Tif evjd_wd(k,4)==i && evjd_wd(k,1)==ts_sumevd(i,t)=s_sumevd(i,t)+1;%计算节点充电电动汽车数量endendend
end

三、程序链接

有需要的可以留言。

 

这篇关于互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510945

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系