互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab

本文主要是介绍互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、主要内容

本程序包含论文二、三、四、五共五章算例内容,每章内容​如下:

第二章的主要研究内容为计及光伏电站快速无功响应特性的分布式电源优化配置方法。考虑越来越多的敏感负荷接入配电系统,以及 PV-STATCOM 这一将光伏逆变器用作 STATCOM 以提供快速无功响应功能的新技术,本章提出了一类加权电压支撑能力指标以量化光伏电站在紧急状态下对敏感负荷节点电压恢复效率的影响,并将其嵌入到分布式电源优化配置模型中。对应的算例结果表明,基于这一改进模型得到的分布式电源配置方案可以有效提高瞬时故障后重要电力节点的电压恢复效率,减少电压暂降等电能质量问题给敏感负荷带来的损失。

 

第三章的主要研究内容为含多类型充电桩的电动汽车充电站优化配置方法。随着电动汽车快充技术的发展,越来越多的不同类型不同功率的充电设施接入了配电系统。这些充电设施在满足电动汽车车主多样化的充电需求的同时,也改变了电动汽车负荷的时空分布情况,从而给电动汽车充电站的优化配置带来了新的挑战。基于这一新趋势,本章提出了一种含多类型充电桩的电动汽车充电站优化配置模型,及其相应的简化处理方法,并分析了同时配置多种功率充电桩所带来的经济效益。 

第四章的主要研究内容为考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法。随着手机、平板电脑等移动智能终端的普及,以及无线通讯技术的发展,越来越多的汽车车主依赖于实时导航技术决定自己的驾驶及泊车行为。对电动汽车而言,泊车地点在很大程度上决定了其充电行为的发生处所,即对应的充电负荷的接入位置。基于这一背景,本章认为实时导航技术的普及使得电动汽车负荷在一定程度上、一定空间范围内是可调度的,并建立了相应的分布式电源与电动汽车充电站联合配置模型,分析了这种空间可调度特性对分布式电源与电动汽车充电站配置方案的影响。 

第五章的主要研究内容为单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置方法。V2G 技术的发展使得电动汽车负荷成为一类可控的资源,能够为电网运行提供峰荷转移、电压调节、旋转备用等诸多类型的辅助服务。这一技术的出现,大大增加了电动汽车与电网间的互动频率及互动深度,对传统的分布式电源与电动汽车充电站优化配置方法形成了挑战。基于这一背景,本章提出了单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置模型,分别分析了无序充电模式、单向 V2G 模式、双向 V2G模式对分布式电源与电动汽车充电站配置方案的影响。

二、部分代码

%构建负荷矩阵
for i=1:nbif sty_jd(i)==1pload(i,1:T)=P1(i).*pc_jm_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_jm_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_jm_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_jm_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_jm_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_jm_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_jm_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_jm_wd;%冬 周末elseif sty_jd(i)==2pload(i,1:T)=P1(i).*pc_sc_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_sc_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_sc_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_sc_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_sc_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_sc_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_sc_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_sc_wd;%冬 周末elsepload(i,1:T)=P1(i).*pc_bg_w;%春 工作日pload(i,T+1:2*T)=P1(i).*pc_bg_wd;%春 周末pload(i,2*T+1:3*T)=P1(i).*px_bg_w;%夏 工作日pload(i,3*T+1:4*T)=P1(i).*px_bg_wd;%夏 周末pload(i,4*T+1:5*T)=P1(i).*pq_bg_w;%秋 工作日pload(i,5*T+1:6*T)=P1(i).*pq_bg_wd;%秋 周末pload(i,6*T+1:7*T)=P1(i).*pd_bg_w;%冬 工作日pload(i,7*T+1:8*T)=P1(i).*pd_bg_wd;%冬 周末end
end
qload=repmat(Q1,1,8*T);
num_w=[];num_wd=[];
for i=1:nb%分别计算工作日和周末时序停车数量if sty_jd(i)==1num_w(i,:)=round(num_peak(i).*arr_jm_w./max(arr_jm_w));num_wd(i,:)=round(num_peak(i).*arr_jm_wd./max(arr_jm_wd));%停车时长分布,样本数量不足,没法用停车时长概率曲线来计算,随机产生停车时长elseif sty_jd(i)==2num_w(i,:)=round(num_peak(i).*arr_sc_w./max(arr_sc_w));num_wd(i,:)=round(num_peak(i).*arr_sc_wd./max(arr_sc_wd));elsenum_w(i,:)=round(num_peak(i).*arr_bg_w./max(arr_bg_w));num_wd(i,:)=round(num_peak(i).*arr_bg_wd./max(arr_bg_wd));end
end
%建立节点电动汽车矩阵
sum_num_w=sum(num_w);
sum_num_wd=sum(num_wd);
max_num=max(sum_num_w,sum_num_wd);
% k=1;
% for t=1:T
%     k1=1;
%     for i=1:nb
%         if stay_time_w(i,t)~=0%计算每个电动汽车的充电时长
%             for y=1:stay_time_w(i,t)
%                 st(k1,t)=t*0.25;
%             end
%             k1=k1+1;
%         end
%     end
% end
k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;%(0,1)均匀分布st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_w(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_w(k,4)=gdch(i);
%             endendendend
end
%周末情况k=1;
for t=1:Tfor i=1:nbif num_w(i,t)~=0for jj=1:num_w(i,t)soc=rand;st(k)=round(1+95*rand)*0.25;%充电时长if soc<0.9linf=find(distance(i,:)==min(distance(i,:)));evjd_wd(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离k=k+1;end
%             if gdch(i)~=0
%                 evjd_wd(k,4)=gdch(i);
%             endendendend
end%% 1.设参
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%定义变量
V = sdpvar(nb,8*T);%电压的平方
I = sdpvar(nl,8*T);%电流的平方
P = sdpvar(nl,8*T);%线路有功
Q = sdpvar(nl,8*T);%线路无功
Pg = sdpvar(nb,8*T);%发电机有功
Qg = sdpvar(nb,8*T);%发电机无功
Nev = intvar(7,1);%备选节点充电桩数量
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,8*T);
qv = sdpvar(nb,8*T);
%sv = sdpvar(nb,8*T);
Ng = intvar(8,1);%燃气轮机安装数量
pg = intvar(nb,8*T);
Constraints = [];
%工作日充电桩情况
s_sumev=zeros(7,T);
[at,~]=size(evjd_w);
for k=1:atfor i=1:7for t=1:Tif evjd_w(k,4)==i && evjd_w(k,1)==ts_sumev(i,t)=s_sumev(i,t)+1;%计算节点充电电动汽车数量endendend
end
%周末充电站情况
s_sumevd=zeros(7,T);
[at,~]=size(evjd_wd);
for k=1:atfor i=1:7for t=1:Tif evjd_wd(k,4)==i && evjd_wd(k,1)==ts_sumevd(i,t)=s_sumevd(i,t)+1;%计算节点充电电动汽车数量endendend
end

三、程序链接

有需要的可以留言。

 

这篇关于互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510945

相关文章

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex