YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)

本文主要是介绍YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法就是我们的Upsample的性能。CARAFE的核心思想是:使用输入特征本身的内容来指导上采样过程,从而实现更精准和高效的特征重建。CARAFE是一种即插即用的上采样机制其本身并没有任何的使用限制所以在YOLOv5的改进中其也可以做到一个提高精度的改进方法 

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

实验效果图如下所示-> 

目录

一、本文介绍

二、CARAFE的机制原理 

2.1 CARAFE的基本原理

2.2 图解CARAFE原理 

2.3 CARAFE的效果图 

三、CARAFE的复现源码

四、手把手教你添加CARAFE机制 

4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 CARAFE的yaml文件

4.3 CARAFE运行成功截图

五、本文总结 


二、CARAFE的机制原理 

 

论文地址:官方论文地址点击即可跳转

代码地址:官方代码地址点击即可跳转

2.1 CARAFE的基本原理

CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。这种方法首次在论文《CARAFE: Content-Aware ReAssembly of FEatures》中提出,旨在改进传统的上采样方法(如双线性插值和转置卷积)的性能。

CARAFE通过在每个位置利用底层内容信息来预测重组核,并在预定义的附近区域内重组特征。由于内容信息的引入,CARAFE可以在不同位置使用自适应和优化的重组核,从而比主流的上采样操作符(如插值或反卷积)表现更好。

CARAFE包括两个步骤首先预测每个目标位置的重组核,然后用预测的核重组特征。给定一个尺寸为 H×W×C 的特征图和一个上采样比率 U,CARAFE将产生一个新的尺寸为 UH×UW×C 的特征图。其次CARAFE的核预测模块根据输入特征的内容生成位置特定的核,然后内容感知重组模块使用这些核来重组特征。

CARAFE可以无缝集成到需要上采样操作的现有框架中。在主流的密集预测任务中,CARAFE对高级和低级任务(如对象检测、实例分割、语义分割和图像修复)都有益处,且额外的参数微不足道。

2.2 图解CARAFE原理 

下图是CARAFE工作机制的示意图。左侧展示了来自Mask R-CNN的多层FPN(特征金字塔网络)特征(直至虚线左侧),右侧展示了集成了CARAFE的Mask R-CNN(直至虚线右侧)。对于采样的位置,该图显示了FPN自上而下路径中累积重组的区域。这样一个区域内的信息被重组到相应的重组中心。 

下图展示了CARAFE的整体框架。CARAFE由两个关键部分组成,即核预测模块和内容感知重组模块。在这个框架中,一个尺寸为 H×W×C 的特征图被上采样因子 U(=2) 倍。 

下图展示了集成了CARAFE的特征金字塔网络(FPN)架构。在这个架构中,CARAFE在FPN的自上而下路径中将特征图的尺寸上采样2倍。CARAFE通过无缝替换最近邻插值而整合到FPN中,从而优化了特征上采样的过程。

2.3 CARAFE的效果图 

下图比较了COCO 2017验证集上基线(上面)和CARAFE(下面)在实例分割结果方面的差异。 

总结:我个人觉得其实其效果提升比较一般甚至某些数据集上提点很微弱,但是它主要的作用是减少计算量是一个更加轻量化的上采样方法。 

三、CARAFE的复现源码

我们将在“ultralytics/nn/modules”目录下面创建一个文件将其复制进去,使用方法在后面会讲。

import torch
import torch.nn as nn
from ultralytics.nn.modules import Convclass CARAFE(nn.Module):def __init__(self, c, k_enc=3, k_up=5, c_mid=64, scale=2):""" The unofficial implementation of the CARAFE module.The details are in "https://arxiv.org/abs/1905.02188".Args:c: The channel number of the input and the output.c_mid: The channel number after compression.scale: The expected upsample scale.k_up: The size of the reassembly kernel.k_enc: The kernel size of the encoder.Returns:X: The upsampled feature map."""super(CARAFE, self).__init__()self.scale = scaleself.comp = Conv(c, c_mid)self.enc = Conv(c_mid, (scale * k_up) ** 2, k=k_enc, act=False)self.pix_shf = nn.PixelShuffle(scale)self.upsmp = nn.Upsample(scale_factor=scale, mode='nearest')self.unfold = nn.Unfold(kernel_size=k_up, dilation=scale,padding=k_up // 2 * scale)def forward(self, X):b, c, h, w = X.size()h_, w_ = h * self.scale, w * self.scaleW = self.comp(X)  # b * m * h * wW = self.enc(W)  # b * 100 * h * wW = self.pix_shf(W)  # b * 25 * h_ * w_W = torch.softmax(W, dim=1)  # b * 25 * h_ * w_X = self.upsmp(X)  # b * c * h_ * w_X = self.unfold(X)  # b * 25c * h_ * w_X = X.view(b, c, -1, h_, w_)  # b * 25 * c * h_ * w_X = torch.einsum('bkhw,bckhw->bchw', [W, X])  # b * c * h_ * w_return X

四、手把手教你添加CARAFE机制 

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一整个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加。)

​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 CARAFE的yaml文件

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, CARAFE, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, CARAFE, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

 

4.3 CARAFE运行成功截图

附上我的运行记录确保我的教程是可用的。 


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

这篇关于YOLOv5改进 | 2023 | CARAFE提高精度的上采样方法(助力细节长点)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507474

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

键盘快捷键:提高工作效率与电脑操作的利器

键盘快捷键:提高工作效率与电脑操作的利器 在数字化时代,键盘快捷键成为了提高工作效率和优化电脑操作的重要工具。无论是日常办公、图像编辑、编程开发,还是游戏娱乐,掌握键盘快捷键都能带来极大的便利。本文将详细介绍键盘快捷键的概念、重要性、以及在不同应用场景中的具体应用。 什么是键盘快捷键? 键盘快捷键,也称为热键或快捷键,是指通过按下键盘上的一组键来完成特定命令或操作的方式。这些快捷键通常涉及同

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时