基于红外热成像的行人检测方法

2023-12-18 04:48

本文主要是介绍基于红外热成像的行人检测方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://blog.csdn.net/watermelon1123/article/details/79898148

基于红外热成像的行人检测方法

叫我西瓜超人 2018-04-11 16:18:27 12706 收藏 58

分类专栏: 计算机视觉

版权

       本文主要讲解在热红外成像下的行人检测方法,方法来自于《Thermal-Infrared Pedestrian ROI Extraction through Thermal andMotion Information Fusion》,感兴趣的可以看下论文原文,若文中有理解错误的地方望指出。

⒈ 热红外成像的特点:

⑴ 不受光照条件应影响

⑵ 图像中的人会比背景显得更亮

整体流程

       先通过热成像阈值分析和运动分析分别比对出可能的人体ROI区域Rt和Rm,然后通过ROI fusion得到混合的ROI区域Rf,再通过一定的策略对人体区域的高和宽分别进行调整,最终通过宽/高比值及面积判定确定最终的Pedestrian ROI。

2. 具体实施方式

2.1 Thermal Analysis

       通过阈值对图像进行二值分割,其中阈值

之后对二值化图像分别进行开操作和闭操作后进行连通域运算,计算后我们仅保留连通域面积大于Amin的连通域作为通过亮度分割结果的候选连通域,记为Rt。其中Amin=0.0025*r*c,r和c 为连通域的宽高。

2.2   Motion Analysis

       热红外成像对于温度比较敏感,当环境温度较高或环境中高温物体干扰多的情况下,仅通过Thermal Analysis将无法检测到全部的行人,因此通过MotionAnalysis加入运动信息的判定,可以检测到场景中运动的行人,增加检测的召回率。

    通过论文《A shape-independent method for pedestrian detection withfar-infrared images》(可以参考博文https://blog.csdn.net/guanyuqiu/article/details/51276576),可以检测得到许多可能的行人ROI区域。在Motion Analysis中我们加入一些额外的限制,设定变化阈值为16(经验值),比对前后两帧的同一位置像素点的差值,若满足条件:

则该像素点为“warm”pixel,我们限制仅当“warm”pixels的个数大于ROI区域pixel个数的5%,并且面积大于最低阈值,我们将这样的ROI记作Rm。

2.3   ROI Fusion

       将得到的Rt和Rm融合为一个ROI区域Rf,分为以下三种情况:

⑴ 对于Rt中的与Rm的没有任何的交集ROI,加入到Rf中;

⑵ 对于Rm中的与Rt的没有任何的交集ROI,加入到Rf中;

⑶ Rm和Rt中有交集的ROI,将和的所有像素点构成一个新的ROI,加入到Rf中,

2.4   Blob Analysis

2.4.1 ROI WidthAdjustment

       因为之前所得的ROI区域可能包含不止一个行人目标,通过Width Adjustment可以将多个行人分开。具体做法是以列为方向统计每列的像素值的和并构成灰度直方图,直方图计算方法:

通过直方图的峰值和低值能够把区域中的多个行人分开。这样我们将分开后的新的ROI记作sRf。

2.4.2 ROI HeightAdjustment

       根据行像素均值对ROI区域高度进行截取。

2.5   Pedestrian Confirmation

       最后一个步骤,通过一些限制滤除一些可能不是行人的ROI区域。限制大概分为两点:

⑴ 如果width>height,需要计算ROI的灰度值标准差,因为通常width>height可能是被误检的灯泡等高温度物体,这种物体通常热量分布比较均匀(人体通常头部亮度较高,其他区域比头部低),因此若标准差小于12,则认为该ROI不是行人,被滤除;

⑵ 面积area>Amin。

⒊ 测试结果

论文中给出了12中不同环境下的测试场景,包括天气的不同和环境温度的不同,为了测试不同环境对方法准确率和召回率的影响。

总体结论是:天气对于热红外成像检测人体目标的影响不大,但是受温度的影响非常大,可以看到随着温度的升高,召回率下降的非常多,甚至在晴天33度的情况下召回率只有0.03;但是在2~20度的区间内,算法都有较好的召回率和准确率。

 

这篇关于基于红外热成像的行人检测方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507089

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi