HiveSql语法优化四 :Bucket Map Join和Sort Merge Bucket Map Join优化

2023-12-17 19:45

本文主要是介绍HiveSql语法优化四 :Bucket Map Join和Sort Merge Bucket Map Join优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bucket Map Join

        之前的map join适用场景是大表join小表的情况,但是两张表都相对较大,若采用普通的Map Join算法,则Map端需要较多的内存来缓存数据,当然可以选择为Map段分配更多的内存,来保证任务运行成功。但是,Map端的内存不可能无上限的分配,所以当参与Join的表数据量均过大时,就可以考虑采用Bucket Map Join算法。

        比如下面两张表进行join操作:

表名

大小

order_detail

1176009934(约1122M)

payment_detail

334198480(约319M)

        首先需要依据源表创建两个分桶表,order_detail建议分16个bucket,payment_detail建议分8个bucket,注意分桶个数的倍数关系以及分桶字段

--订单表
hive (default)> 
drop table if exists order_detail_bucketed;
create table order_detail_bucketed(id           string comment '订单id',user_id      string comment '用户id',product_id   string comment '商品id',province_id  string comment '省份id',create_time  string comment '下单时间',product_num  int comment '商品件数',total_amount decimal(16, 2) comment '下单金额'
)
clustered by (id) into 16 buckets
row format delimited fields terminated by '\t';--支付表
hive (default)> 
drop table if exists payment_detail_bucketed;
create table payment_detail_bucketed(id              string comment '支付id',order_detail_id string comment '订单明细id',user_id         string comment '用户id',payment_time    string comment '支付时间',total_amount    decimal(16, 2) comment '支付金额'
)
clustered by (order_detail_id) into 8 buckets
row format delimited fields terminated by '\t';

然后向两个分桶表导入数据:

--订单表
hive (default)> 
insert overwrite table order_detail_bucketed
selectid,user_id,product_id,province_id,create_time,product_num,total_amount   
from order_detail
where dt='2020-06-14';--分桶表
hive (default)> 
insert overwrite table payment_detail_bucketed
selectid,order_detail_id,user_id,payment_time,total_amount
from payment_detail
where dt='2020-06-14';

然后设置以下参数:

--关闭cbo优化,cbo会导致hint信息被忽略,需将如下参数修改为false
set hive.cbo.enable=false;
--map join hint默认会被忽略(因为已经过时),需将如下参数修改为false
set hive.ignore.mapjoin.hint=false;
--启用bucket map join优化功能,默认不启用,需将如下参数修改为true
set hive.optimize.bucketmapjoin = true;

最后在重写SQL语句,如下:

select /*+ mapjoin(pd) */*
from order_detail_bucketed od
join payment_detail_bucketed pd on od.id = pd.order_detail_id;

        需要注意的是,Bucket Map Join的执行计划的基本信息和普通的Map Join无异,若想看到差异,可执行如下语句,查看执行计划的详细信息。详细执行计划中,如在Map Join Operator中看到 “BucketMapJoin: true”,则表明使用的Join算法为Bucket Map Join。

explain extended select /*+ mapjoin(pd) */*
from order_detail_bucketed od
join payment_detail_bucketed pd on od.id = pd.order_detail_id;

Sort Merge Bucket Map Join

        两张表都相对较大,除了可以考虑采用Bucket Map Join算法,还可以考虑SMB Join。相较于Bucket Map Join,SMB Map Join对分桶大小是没有要求的。

需要设置如下参数:

--启动Sort Merge Bucket Map Join优化
set hive.optimize.bucketmapjoin.sortedmerge=true;
--使用自动转换SMB Join
set hive.auto.convert.sortmerge.join=true;

这篇关于HiveSql语法优化四 :Bucket Map Join和Sort Merge Bucket Map Join优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505616

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

C++语法知识点合集:11.模板

文章目录 一、非类型模板参数1.非类型模板参数的基本形式2.指针作为非类型模板参数3.引用作为非类型模板参数4.非类型模板参数的限制和陷阱:5.几个问题 二、模板的特化1.概念2.函数模板特化3.类模板特化(1)全特化(2)偏特化(3)类模板特化应用示例 三、模板分离编译1.概念2.模板的分离编译 模版总结 一、非类型模板参数 模板参数分类类型形参与非类型形参 非类型模板

Java基础回顾系列-第一天-基本语法

基本语法 Java基础回顾系列-第一天-基本语法基础常识人机交互方式常用的DOS命令什么是计算机语言(编程语言) Java语言简介Java程序运行机制Java虚拟机(Java Virtual Machine)垃圾收集机制(Garbage Collection) Java语言的特点面向对象健壮性跨平台性 编写第一个Java程序什么是JDK, JRE下载及安装 JDK配置环境变量 pathHe